Postdisaster image‐based damage detection and repair cost estimation of reinforced concrete buildings using dual convolutional neural networks

卷积神经网络 计算机科学 鉴定(生物学) 钢筋混凝土 人工神经网络 对偶(语法数字) 人工智能 机器学习 风险分析(工程) 结构工程 工程类 业务 植物 生物 文学类 艺术
作者
Xiao Pan,T.Y. Yang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:35 (5): 495-510 被引量:78
标识
DOI:10.1111/mice.12549
摘要

Abstract Reinforced concrete (RC) buildings are commonly used around the world. With recent earthquakes worldwide, rapid structural damage inspection and repair cost evaluation are crucial for building owners and policy makers to make informed risk management decisions. To improve the efficiency of such inspection, advanced computer vision techniques based on convolutional neural networks have been adopted in recent research to rapidly quantify the damage state (DS) of structures. In this article, an advanced object detection neural network, named YOLOv2, is implemented, which achieves 98.2% and 84.5% average precision in training and testing, respectively. The proposed YOLOv2 is used in combination with the classification neural network, which improves the identification accuracy for critical DS of RC structures by 7.5%. The improved classification procedures allow engineers to rapidly and more accurately quantify the DSs of the structure, and also localize the critical damage features. The identified DS can then be integrated with the state‐of‐the‐art performance evaluation framework to quantify the financial losses of critical RC buildings. The results can be used by the building owners and decision makers to make informed risk management decisions immediately after the strong earthquake shaking. Hence, resources can be allocated rapidly to improve the resiliency of the community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinyu完成签到,获得积分10
1秒前
lilivite应助大反应釜采纳,获得30
1秒前
www123qe发布了新的文献求助10
2秒前
梧桐完成签到,获得积分10
2秒前
檀宇亭完成签到,获得积分10
2秒前
2秒前
大个应助o10采纳,获得10
2秒前
小二郎应助高挑的梦芝采纳,获得10
4秒前
样样子发布了新的文献求助10
5秒前
圈圈完成签到,获得积分10
5秒前
万能图书馆应助liumuyang0203采纳,获得10
6秒前
Charlie发布了新的文献求助20
7秒前
7秒前
朱洛尘发布了新的文献求助10
8秒前
10秒前
ekswai发布了新的文献求助10
10秒前
Possession完成签到,获得积分10
11秒前
cj完成签到,获得积分10
11秒前
12秒前
o10完成签到,获得积分20
13秒前
司空豁发布了新的文献求助10
14秒前
14秒前
呢喃Dora完成签到,获得积分10
14秒前
611完成签到,获得积分10
14秒前
李爱国应助样样子采纳,获得10
14秒前
现代的访曼应助lxcy0612采纳,获得20
15秒前
www123qe完成签到,获得积分20
15秒前
15秒前
o10发布了新的文献求助10
16秒前
JamesPei应助朱洛尘采纳,获得10
16秒前
蛙趣发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
18秒前
曾经的风华完成签到,获得积分10
18秒前
JamesPei应助夏尔采纳,获得10
18秒前
liumuyang0203发布了新的文献求助10
19秒前
高贵的裘发布了新的文献求助20
22秒前
kaili完成签到 ,获得积分10
23秒前
柳大宝发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502587
关于积分的说明 11108917
捐赠科研通 3233359
什么是DOI,文献DOI怎么找? 1787265
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122