Postdisaster image‐based damage detection and repair cost estimation of reinforced concrete buildings using dual convolutional neural networks

卷积神经网络 计算机科学 鉴定(生物学) 钢筋混凝土 人工神经网络 对偶(语法数字) 人工智能 机器学习 风险分析(工程) 结构工程 工程类 业务 植物 生物 文学类 艺术
作者
Xiao Pan,T.Y. Yang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:35 (5): 495-510 被引量:78
标识
DOI:10.1111/mice.12549
摘要

Abstract Reinforced concrete (RC) buildings are commonly used around the world. With recent earthquakes worldwide, rapid structural damage inspection and repair cost evaluation are crucial for building owners and policy makers to make informed risk management decisions. To improve the efficiency of such inspection, advanced computer vision techniques based on convolutional neural networks have been adopted in recent research to rapidly quantify the damage state (DS) of structures. In this article, an advanced object detection neural network, named YOLOv2, is implemented, which achieves 98.2% and 84.5% average precision in training and testing, respectively. The proposed YOLOv2 is used in combination with the classification neural network, which improves the identification accuracy for critical DS of RC structures by 7.5%. The improved classification procedures allow engineers to rapidly and more accurately quantify the DSs of the structure, and also localize the critical damage features. The identified DS can then be integrated with the state‐of‐the‐art performance evaluation framework to quantify the financial losses of critical RC buildings. The results can be used by the building owners and decision makers to make informed risk management decisions immediately after the strong earthquake shaking. Hence, resources can be allocated rapidly to improve the resiliency of the community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助背后书雪采纳,获得10
刚刚
刚刚
刚刚
Akim应助乌兰巴托没有海采纳,获得10
刚刚
刚刚
1秒前
yufanhui应助和尘同光采纳,获得10
1秒前
石龙子完成签到,获得积分10
1秒前
生命奋斗完成签到,获得积分10
1秒前
我是老大应助科研小白采纳,获得10
2秒前
KY源发布了新的文献求助30
2秒前
YYR完成签到,获得积分10
3秒前
huizi完成签到,获得积分10
3秒前
wuminhui发布了新的文献求助10
3秒前
4秒前
5秒前
彭于晏应助a1441949575采纳,获得10
6秒前
酷波er应助yj采纳,获得10
6秒前
6秒前
赵哥发布了新的文献求助10
7秒前
yeyeming完成签到,获得积分10
7秒前
7秒前
8秒前
农大彭于晏完成签到,获得积分10
9秒前
思源应助可乐冰淇淋采纳,获得20
9秒前
9秒前
YLJGJZ发布了新的文献求助10
10秒前
10秒前
善学以致用应助努力采纳,获得10
10秒前
英姑应助123采纳,获得10
11秒前
一木张完成签到,获得积分10
11秒前
杨然发布了新的文献求助10
11秒前
11秒前
JamesPei应助yang采纳,获得10
11秒前
13秒前
SciGPT应助梁_采纳,获得20
13秒前
田様应助小屁孩采纳,获得10
14秒前
幽迷狂的发胶完成签到,获得积分10
14秒前
ZZH发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152976
求助须知:如何正确求助?哪些是违规求助? 2804157
关于积分的说明 7857469
捐赠科研通 2461911
什么是DOI,文献DOI怎么找? 1310570
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601788