Practical Data Poisoning Attack against Next-Item Recommendation

计算机科学 推荐系统 杠杆(统计) 启发式 光学(聚焦) 强化学习 多样性(控制论) 对抗制 再培训 机器学习 人工智能 光学 物理 业务 国际贸易
作者
Hengtong Zhang,Yaliang Li,Bolin Ding,Jing Gao
标识
DOI:10.1145/3366423.3379992
摘要

Online recommendation systems make use of a variety of information sources to provide users the items that users are potentially interested in. However, due to the openness of the online platform, recommendation systems are vulnerable to data poisoning attacks. Existing attack approaches are either based on simple heuristic rules or designed against specific recommendations approaches. The former often suffers unsatisfactory performance, while the latter requires strong knowledge of the target system. In this paper, we focus on a general next-item recommendation setting and propose a practical poisoning attack approach named LOKI against blackbox recommendation systems. The proposed LOKI utilizes the reinforcement learning algorithm to train the attack agent, which can be used to generate user behavior samples for data poisoning. In real-world recommendation systems, the cost of retraining recommendation models is high, and the interaction frequency between users and a recommendation system is restricted. Given these real-world restrictions, we propose to let the agent interact with a recommender simulator instead of the target recommendation system and leverage the transferability of the generated adversarial samples to poison the target system. We also propose to use the influence function to efficiently estimate the influence of injected samples on the recommendation results, without re-training the models within the simulator. Extensive experiments on two datasets against four representative recommendation models show that the proposed LOKI achieves better attacking performance than existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
井野浮应助吃海的鱼采纳,获得20
刚刚
刚刚
1秒前
2秒前
隐形曼青应助懵懂的冰海采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
我想当二郎神完成签到,获得积分10
4秒前
4秒前
储物间发布了新的文献求助10
5秒前
6秒前
JamesPei应助cfd采纳,获得10
7秒前
河堤发布了新的文献求助10
7秒前
999发布了新的文献求助10
8秒前
吕lvlvlvlvlv发布了新的文献求助10
8秒前
Phantom1234发布了新的文献求助10
9秒前
贺万万发布了新的文献求助10
9秒前
甘草不甜发布了新的文献求助10
9秒前
锐哥发布了新的文献求助10
9秒前
9秒前
zhangsudi完成签到,获得积分10
10秒前
11秒前
chem发布了新的文献求助10
11秒前
11秒前
Akim应助shidizai采纳,获得10
11秒前
12秒前
12秒前
12秒前
斯文败类应助en采纳,获得10
13秒前
欧阳静芙发布了新的文献求助10
14秒前
liaoyaya发布了新的文献求助10
16秒前
HHHH发布了新的文献求助10
16秒前
不会写诗发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
CipherSage应助WTT采纳,获得10
17秒前
999完成签到,获得积分20
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228989
求助须知:如何正确求助?哪些是违规求助? 2876727
关于积分的说明 8196386
捐赠科研通 2544156
什么是DOI,文献DOI怎么找? 1374167
科研通“疑难数据库(出版商)”最低求助积分说明 646890
邀请新用户注册赠送积分活动 621582