流式细胞术
脂多糖
免疫系统
化学
单核细胞
体外
精油
树突状细胞
免疫学
细胞生物学
生物
生物化学
色谱法
作者
Alia Aldahlawi,Amani Taher Al-Zahrani,Mohamed F. Elshal
标识
DOI:10.1186/s12906-020-03146-5
摘要
Abstract Background Boswellia sacra resin has been commonly used as analgesic, antimicrobial, and anti-inflammatory properties, which reflect its immunomodulatory activity. Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) and sentinel cells that regulate the immune response. This study aims at investigating whether crude essential oil extracted from Boswellia sacra resin (BSEO), has a potential effect on the phenotype and functions of human monocyte-derived DCs. Methods Oil extract from the resin of Boswellia sacra was prepared by hydrodistillation using a custom made hydrodistiller. BSEO-mediated cell viability has been initially studied on human skin dermis cells (HSD) and DC precursors using quantitative and qualitative assays before applying on DCs. Human DCs were generated from differentiated peripheral blood monocytes cultured in media containing both GM-CSF and IL-4. DCs were exposed to 5 μg/mL or 10 μ g/mL of BSEO in vitro. Morphological, phonotypical, and functional properties studied with microscopy, flow cytometry, and ELISA. Results Crude BSEO was found to interfere with the maturation and differentiation of DCs from precursor cells in the presence or absence of lipopolysaccharide (LPS). BSEO-treated DCs, cultured in the presence of LPS, reduced the ability of allogeneic T cells to proliferate compared to that co-cultured with LPS-stimulated DCs only. In addition, the endocytic capacity and secretion of IL-10 by DCs treated with BSEO was enhanced in comparison to LPS treated cells. Analysis of the chemical composition of BESO using GC-MS (Clarus 500 GC/MS, PerkinElmer, Shelton, CT) revealed the presence of compounds with several biological activities including antibacterial, antioxidant, and anti-inflammatory properties. Conclusion Results indicated that BSEO deviates the differentiation of monocytes into immature DCs. Furthermore, stimulation of immature DCs with BSEO was unable to generate full DC maturation. However, these findings may potentially be employed to generate DCs with tolerogenic properties that are able to induce tolerance in diseases with hypersensitivity, autoimmunity as well as transplantation.
科研通智能强力驱动
Strongly Powered by AbleSci AI