Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks

嵌入 计算机科学 可扩展性 弹道 代表(政治) 人工智能 循环神经网络 机器学习 理论计算机科学 投影(关系代数) 人工神经网络 算法 政治 物理 数据库 政治学 法学 天文
作者
Srijan Kumar,Xikun Zhang,Jure Leskovec
标识
DOI:10.1145/3292500.3330895
摘要

Modeling sequential interactions between users and items/products is crucial in domains such as e-commerce, social networking, and education. Representation learning presents an attractive opportunity to model the dynamic evolution of users and items, where each user/item can be embedded in a Euclidean space and its evolution can be modeled by an embedding trajectory in this space. However, existing dynamic embedding methods generate embeddings only when users take actions and do not explicitly model the future trajectory of the user/item in the embedding space. Here we propose JODIE, a coupled recurrent neural network model that learns the embedding trajectories of users and items. JODIE employs two recurrent neural networks to update the embedding of a user and an item at every interaction. Crucially, JODIE also models the future embedding trajectory of a user/item. To this end, it introduces a novel projection operator that learns to estimate the embedding of the user at any time in the future. These estimated embeddings are then used to predict future user-item interactions. To make the method scalable, we develop a t-Batch algorithm that creates time-consistent batches and leads to 9x faster training. We conduct six experiments to validate JODIE on two prediction tasks---future interaction prediction and state change prediction---using four real-world datasets. We show that JODIE outperforms six state-of-the-art algorithms in these tasks by at least 20% in predicting future interactions and 12% in state change prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
seven完成签到,获得积分10
刚刚
wzxxxx完成签到,获得积分20
刚刚
1秒前
fffzy完成签到,获得积分10
1秒前
MADKAI发布了新的文献求助50
1秒前
lkn完成签到,获得积分10
1秒前
浦肯野举报单薄凌蝶求助涉嫌违规
2秒前
爱撒娇的橘子完成签到,获得积分10
2秒前
2秒前
Owen应助皮蛋瘦肉周采纳,获得10
3秒前
李漂亮完成签到,获得积分10
3秒前
222完成签到 ,获得积分10
3秒前
wzxxxx发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
文艺谷蓝完成签到,获得积分10
5秒前
丰富的复天完成签到,获得积分10
5秒前
干净的寒天完成签到,获得积分10
5秒前
科研通AI5应助WNL采纳,获得10
6秒前
无聊的面包完成签到,获得积分10
6秒前
6秒前
JIN完成签到,获得积分10
8秒前
Amber应助老疯智采纳,获得10
8秒前
星寒完成签到 ,获得积分10
8秒前
shen完成签到,获得积分10
10秒前
尊敬的发布了新的文献求助10
11秒前
zhenzhen发布了新的文献求助10
12秒前
12秒前
眼睛大的金鱼完成签到,获得积分10
12秒前
CipherSage应助不对也没错采纳,获得10
13秒前
曹梦梦发布了新的文献求助10
14秒前
JayWu完成签到,获得积分10
14秒前
14秒前
小马甲应助BaiX采纳,获得10
14秒前
大工梧桐发布了新的文献求助10
14秒前
香蕉君达完成签到,获得积分10
14秒前
15秒前
小马甲应助愉快的定帮采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678