Robust Analytical Methods for the Accurate Quantification of the Total Biomass Composition of Mammalian Cells

生物量(生态学) 作文(语言) 质谱法 中国仓鼠卵巢细胞 化学 色谱法 生物化学 生物 生态学 语言学 哲学 受体
作者
Diana Széliová,Harald Schoeny,Špela Knez,Christina Troyer,Cristina Coman,Evelyn Rampler,Gunda Koellensperger,Robert Ahrends,Stephan Hann,Nicole Borth,Jürgen Zanghellini,David E. Ruckerbauer
出处
期刊:Methods in molecular biology 卷期号:: 119-160 被引量:7
标识
DOI:10.1007/978-1-0716-0159-4_7
摘要

Biomass composition is an important input for genome-scale metabolic models and has a big impact on their predictive capabilities. However, researchers often rely on generic data for biomass composition, e.g. collected from similar organisms. This leads to inaccurate predictions, because biomass composition varies between different cell lines, conditions, and growth phases. In this chapter we present protocols for the determination of the biomass composition of Chinese Hamster Ovary (CHO) cells. These methods can easily be adapted to other types of mammalian cells. The protocols include the quantification of cell dry mass and of the main biomass components, namely protein, lipid, DNA, RNA, and carbohydrates. Cell dry mass is determined gravimetrically by weighing a defined number of cells. Amino acid composition and protein content are measured by gas chromatography mass spectrometry. Lipids are quantified by shotgun mass spectrometry, which provides quantities for the different lipid classes and also the distribution of fatty acids. RNA is purified and then quantified spectrophotometrically. The methods for DNA and carbohydrates are simple fluorometric and colorimetric assays adapted to a 96-well plate format. To ensure quantitative results, internal standards or spike-in controls are used in all methods, e.g. to account for possible matrix effects or loss of material. Finally, the last section provides a guide on how to convert the measured data into biomass equations, which can then be integrated into a metabolic model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
公茂源完成签到 ,获得积分10
刚刚
共享精神应助spurs17采纳,获得30
1秒前
BONBON发布了新的文献求助10
2秒前
liuqian发布了新的文献求助10
2秒前
浮生完成签到 ,获得积分10
2秒前
奔跑的青霉素完成签到 ,获得积分10
2秒前
linxue发布了新的文献求助10
2秒前
科研通AI5应助Annie采纳,获得10
2秒前
3秒前
执着发布了新的文献求助20
3秒前
原鑫完成签到,获得积分10
3秒前
寒涛先生完成签到,获得积分20
4秒前
5秒前
科研通AI5应助呆萌的元枫采纳,获得30
5秒前
5秒前
gzsy发布了新的文献求助10
5秒前
7秒前
9秒前
9秒前
哄不好的南完成签到,获得积分10
9秒前
makus完成签到,获得积分10
9秒前
西西歪完成签到,获得积分10
11秒前
11秒前
深情安青应助BONBON采纳,获得10
11秒前
小马完成签到,获得积分10
12秒前
12秒前
细腻沅发布了新的文献求助10
14秒前
火羽白然完成签到 ,获得积分10
14秒前
冰西瓜完成签到 ,获得积分10
15秒前
季忆发布了新的文献求助10
15秒前
15秒前
cc发布了新的文献求助10
16秒前
Hello应助糊涂的小伙采纳,获得10
16秒前
甜甜的冷霜完成签到,获得积分10
16秒前
hkxfg发布了新的文献求助10
17秒前
谭谨川完成签到,获得积分10
17秒前
李爱国应助云中渊采纳,获得10
18秒前
18秒前
LT发布了新的文献求助10
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808