Channel Attention Module with Multi-scale Grid Average Pooling for Breast Cancer Segmentation in an Ultrasound Image

分割 计算机科学 人工智能 深度学习 卷积神经网络 乳腺癌 图像分割 乳腺摄影术 模式识别(心理学) 频道(广播) 联营 乳腺超声检查 计算机视觉 癌症 医学 电信 内科学
作者
Haeyun Lee,Jinhyoung Park,Jae Youn Hwang
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:131
标识
DOI:10.1109/tuffc.2020.2972573
摘要

Breast cancer accounts for the second-largest number of deaths in women around the world, and more than 8% of women will suffer from the disease in their lifetime. Mortality due to breast cancer can be reduced by its early and precise diagnosis. Many studies have investigated methods for segmentation, and computer-aided diagnosis based on deep learning techniques, in particular, has recently gained attention. However, recently proposed methods such as fully convolutional network (FCN), SegNet, and U-Net still need to be further improved to provide better semantic segmentation when diagnosing breast cancer by ultrasound imaging, because of their low performance. In this article, we propose a channel attention module with multiscale grid average pooling (MSGRAP) for the precise segmentation of breast cancer regions in ultrasound images. We demonstrate the effectiveness of the channel attention module with MSGRAP for semantic segmentation and develop a novel semantic segmentation network with the proposed attention module for the precise segmentation of breast cancer regions in ultrasound images. While a conventional convolutional operation cannot use global spatial information on input images and only use the small local information in a kernel of a convolution filter, the proposed attention module allows using both global and local spatial information. In addition, through ablation studies, we come up with a network architecture for precise breast cancer segmentation in an ultrasound image. The proposed network was constructed with an open-source breast cancer ultrasound image data set, and its performance was compared with those of other state-of-the-art deep-learning models for the segmentation of breast cancer. The experimental results showed that our network outperformed other segmentation methods, and the proposed channel attention module improved the performance of the network for breast cancer segmentation in ultrasound images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助腼腆的馒头采纳,获得10
刚刚
2秒前
达da完成签到,获得积分10
3秒前
dd99081发布了新的文献求助10
3秒前
3秒前
4秒前
火星上的夜香完成签到 ,获得积分10
4秒前
ppxx完成签到,获得积分10
5秒前
6秒前
Wu发布了新的文献求助10
6秒前
gaogao发布了新的文献求助10
7秒前
大个应助mm采纳,获得10
7秒前
听风发布了新的文献求助10
7秒前
8秒前
callmecjh发布了新的文献求助10
8秒前
10秒前
11秒前
情怀应助田田田chong采纳,获得10
11秒前
Jasper应助暴躁的梦岚采纳,获得10
12秒前
12秒前
华仔应助ylw采纳,获得10
13秒前
13秒前
hyjhhy发布了新的文献求助10
13秒前
叶子发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
Richard完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
17秒前
满意的冷之完成签到,获得积分10
18秒前
xiaozhang发布了新的文献求助10
18秒前
18秒前
zheng完成签到,获得积分10
18秒前
18秒前
Jiayi发布了新的文献求助10
19秒前
会顺利毕业的小夏完成签到,获得积分10
20秒前
欢呼鱼发布了新的文献求助10
21秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391025
求助须知:如何正确求助?哪些是违规求助? 3002329
关于积分的说明 8803309
捐赠科研通 2688943
什么是DOI,文献DOI怎么找? 1472808
科研通“疑难数据库(出版商)”最低求助积分说明 681187
邀请新用户注册赠送积分活动 674001