Efficient and Effective Regularized Incomplete Multi-view Clustering

聚类分析 计算机科学 核(代数) 相关聚类 约束聚类 趋同(经济学) 人工智能 CURE数据聚类算法 数据挖掘 算法 数学优化 机器学习 数学 经济增长 组合数学 经济
作者
Xinwang Liu,Miaomiao Li,Chang Tang,Jingyuan Xia,Jian Xiong,Li Liu,Marius Kloft,En Zhu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:156
标识
DOI:10.1109/tpami.2020.2974828
摘要

Incomplete multi-view clustering (IMVC) optimally combines multiple pre-specified incomplete views to improve clustering performance. Among various excellent solutions, the recently proposed multiple kernel k-means with incomplete kernels (MKKM-IK) forms a benchmark, which redefines IMVC as a joint optimization problem where the clustering and kernel matrix imputation tasks are alternately performed until convergence. Though demonstrating promising performance in various applications, we observe that the manner of kernel matrix imputation in MKKM-IK would incur intensive computational and storage complexities, over-complicated optimization and limitedly improved clustering performance. In this paper, we first propose an Efficient and Effective Incomplete Multi-view Clustering (EE-IMVC) algorithm to address these issues. Instead of completing the incomplete kernel matrices, EE-IMVC proposes to impute each incomplete base matrix generated by incomplete views with a learned consensus clustering matrix. Moreover, we further improve this algorithm by incorporating prior knowledge to regularize the learned consensus clustering matrix. Two three-step iterative algorithms are carefully developed to solve the resultant optimization problems with linear computational complexity, and their convergence is theoretically proven. After that, we theoretically study the generalization bound of the proposed algorithms. Furthermore, we conduct comprehensive experiments to study the proposed algorithms in terms of clustering accuracy, evolution of the learned consensus clustering matrix and the convergence. As indicated, our algorithms deliver their effectiveness by significantly and consistently outperforming some state-of-the-art ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助凶狠的冷松采纳,获得10
刚刚
华仔应助丶夜落情泪采纳,获得10
4秒前
5秒前
7秒前
冬虫夏草完成签到,获得积分10
7秒前
ihcwo完成签到,获得积分10
8秒前
cc关闭了cc文献求助
9秒前
妮夏发布了新的文献求助10
9秒前
邢文瑞发布了新的文献求助10
10秒前
13秒前
搜集达人应助66668888采纳,获得10
13秒前
abab小王完成签到,获得积分10
14秒前
15秒前
快乐的龙猫完成签到,获得积分10
18秒前
liumou完成签到,获得积分10
18秒前
打打应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
19秒前
NexusExplorer应助科研通管家采纳,获得30
19秒前
19秒前
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
所所应助科研通管家采纳,获得10
19秒前
sunshine发布了新的文献求助10
20秒前
罗晓倩发布了新的文献求助10
20秒前
KaMoria完成签到,获得积分10
22秒前
lily336699完成签到,获得积分10
23秒前
大模型应助OUDIE采纳,获得10
23秒前
23秒前
xy关注了科研通微信公众号
24秒前
大学发布了新的文献求助10
25秒前
李健的小迷弟应助FF采纳,获得10
27秒前
sunshine完成签到,获得积分10
27秒前
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999408
求助须知:如何正确求助?哪些是违规求助? 3538753
关于积分的说明 11275049
捐赠科研通 3277597
什么是DOI,文献DOI怎么找? 1807633
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810111