亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Decomposition of Hydrogen Peroxide Catalyzed by AuPd Nanocatalysts during Methane Oxidation to Methanol

纳米材料基催化剂 甲烷 催化作用 分解 化学 甲醇 甲烷厌氧氧化 化学工程 过氧化氢 无机化学 有机化学 工程类
作者
Rui Serra-Maia,F. Marc Michel,Yijin Kang,Eric A. Stach
出处
期刊:ACS Catalysis 卷期号:10 (9): 5115-5123 被引量:25
标识
DOI:10.1021/acscatal.0c00315
摘要

Selective oxidation of methane into energy-dense liquid derivatives at low temperature and pressure is critical for enabling the use of vast natural gas reserves around the world. This has been recently achieved with AuPd nanocatalysts, but the process exhibits accelerated rates of deleterious H2O2 self-decomposition, which results in prohibitive industrial costs. We performed a multivariate analysis of 143 H2O2 decomposition rate measurements reported in the literature to quantify the effect of reaction conditions and catalyst properties in the decomposition of H2O2 at conditions used during methane upgrading. The results show that the reaction is first order in terms of H2O2 concentration and correlates with a larger particle size. The catalytic activity of colloidal AuPd is lower than that of supported AuPd. The effect of methane pressure is practically negligible, which is evidenced by an H2O2 decomposition rate only 42% smaller when the methane pressure is increased more than 6 log-units. Overall, the results indicate that methane oxidation occurs in a significant excess of H2O2, which contributes to its radical-based self-decomposition. Inhibiting the activity of AuPd nanocatalysts toward H2O2 self-decomposition is key to achieving high H2O2 efficiency use for the oxidation of methane to methanol. This can be done by decreasing the concentration of H2O2, using smaller AuPd nanocatalysts, increasing the Au/Pd ratio, using colloidal versus supported nanocatalysts, or increasing the pressure of methane in the reactor. The results of this study provide a path for targeted AuPd catalyst optimization for methane upgrading with improved H2O2 decomposition efficiency and high methane oxidation productivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
俭朴的乐巧完成签到 ,获得积分10
13秒前
17秒前
chenzibo完成签到,获得积分10
22秒前
坦率邪欢发布了新的文献求助10
22秒前
23秒前
24秒前
zf完成签到,获得积分10
24秒前
科研通AI5应助bubu采纳,获得10
25秒前
28秒前
chenzibo发布了新的文献求助10
28秒前
28秒前
爆炸boom完成签到 ,获得积分10
29秒前
terry完成签到,获得积分10
29秒前
科研通AI5应助坦率邪欢采纳,获得10
29秒前
30秒前
wtg完成签到,获得积分10
32秒前
扳手已就位完成签到,获得积分10
32秒前
方班术完成签到,获得积分10
32秒前
11发布了新的文献求助10
34秒前
棠梨子完成签到 ,获得积分10
34秒前
Kashing完成签到,获得积分10
35秒前
CipherSage应助wtg采纳,获得10
35秒前
医学牲完成签到 ,获得积分10
35秒前
方班术发布了新的文献求助10
35秒前
Elvira完成签到,获得积分10
36秒前
二七关注了科研通微信公众号
39秒前
王志鹏完成签到 ,获得积分10
42秒前
举子完成签到,获得积分10
45秒前
龙兰发布了新的文献求助30
48秒前
爆米花应助科研通管家采纳,获得10
52秒前
CipherSage应助科研通管家采纳,获得10
52秒前
科研通AI5应助科研通管家采纳,获得10
52秒前
晓筠完成签到,获得积分10
58秒前
latiao99应助moment采纳,获得10
1分钟前
沐沐心完成签到 ,获得积分10
1分钟前
王小明完成签到,获得积分10
1分钟前
1分钟前
blue完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516274
求助须知:如何正确求助?哪些是违规求助? 3098575
关于积分的说明 9239838
捐赠科研通 2793645
什么是DOI,文献DOI怎么找? 1533143
邀请新用户注册赠送积分活动 712580
科研通“疑难数据库(出版商)”最低求助积分说明 707370