索波列夫空间
订单(交换)
组合数学
数学物理
数学
空格(标点符号)
初值问题
数学分析
物理
财务
语言学
哲学
经济
作者
Mamoru Okamoto,Masahiro Ikeda,Tomoyuki Tanaka
出处
期刊:Cornell University - arXiv
日期:2020-01-01
标识
DOI:10.48550/arxiv.2004.03215
摘要
We study the Cauchy problem to the semilinear fourth-order Schr\"odinger equations: \begin{equation}\label{0-1}\tag{4NLS} \begin{cases} i\partial_t u+\partial_x^4u=G\left(\left\{\partial_x^{k}u\right\}_{k\le \gamma},\left\{\partial_x^{k}\bar{u}\right\}_{k\le \gamma}\right), & t>0,\ x\in \mathbb{R}, \\ \ \ \ u|_{t=0}=u_0\in H^s(\mathbb{R}), \end{cases} \end{equation} where $\gamma\in \{1,2,3\}$ and the unknown function $u=u(t,x)$ is complex valued. In this paper, we consider the nonlinearity $G$ of the polynomial \[ G(z)=G(z_1,\cdots,z_{2(\gamma+1)}) :=\sum_{m\le |\alpha|\le l}C_{\alpha}z^{\alpha}, \] for $z\in \mathbb{C}^{2(\gamma+1)}$, where $m,l\in\mathbb{N}$ with $3\le m\le l$ and $C_{\alpha}\in \mathbb{C}$ with $\alpha\in (\mathbb{N}\cup \{0\})^{2(\gamma+1)}$ is a constant. The purpose of the present paper is to prove well-posedness of the problem (\ref{0-1}) in the lower order Sobolev space $H^s(\mathbb{R})$ or with more general nonlinearities than previous results. Our proof of the main results is based on the contraction mapping principle on a suitable function space employed by D. Pornnopparath (2018). To obtain the key linear and bilinear estimates, we construct a suitable decomposition of the Duhamel term introduced by I. Bejenaru, A. D. Ionescu, C. E. Kenig, and D. Tataru (2011). Moreover we discuss scattering of global solutions and the optimality for the regularity of our well-posedness results, namely we prove that the flow map is not smooth in several cases.
科研通智能强力驱动
Strongly Powered by AbleSci AI