计算机科学
杠杆(统计)
模块化设计
残余物
特征学习
人工智能
块(置换群论)
卷积神经网络
建筑
代表(政治)
计算
延迟(音频)
深度学习
残差神经网络
理论计算机科学
计算机工程
算法
操作系统
政治
艺术
视觉艺术
电信
数学
法学
政治学
几何学
作者
Hang Zhang,Chongruo Wu,Zhongyue Zhang,Yi Zhu,Haibin Lin,Zhi Zhang,Yue Sun,Tong He,Jonas Mueller,R. Manmatha,Mu Li,Alexander J. Smola
标识
DOI:10.1109/cvprw56347.2022.00309
摘要
The ability to learn richer network representations generally boosts the performance of deep learning models. To improve representation-learning in convolutional neural networks, we present a multi-branch architecture, which applies channel-wise attention across different network branches to leverage the complementary strengths of both feature-map attention and multi-path representation. Our proposed Split-Attention module provides a simple and modular computation block that can serve as a drop-in replacement for the popular residual block, while producing more diverse representations via cross-feature interactions. Adding a Split-Attention module into the architecture design space of RegNet-Y and FBNetV2 directly improves the performance of the resulting network. Replacing residual blocks with our Split-Attention module, we further design a new variant of the ResNet model, named ResNeSt, which outperforms EfficientNet in terms of the accuracy/latency trade-off.
科研通智能强力驱动
Strongly Powered by AbleSci AI