Differential Diagnosis of Benign and Malignant Thyroid Nodules Using Deep Learning Radiomics of Thyroid Ultrasound Images

医学 甲状腺结节 鉴别诊断 接收机工作特性 置信区间 甲状腺 放射科 超声波 卷积神经网络 无线电技术 深度学习 人工智能 病理 内科学 计算机科学
作者
Hui Zhou,Yinhua Jin,Lei Dai,Meiwu Zhang,Yuqin Qiu,Kun Wang,Jie Tian,Jianjun Zheng
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:127: 108992-108992 被引量:77
标识
DOI:10.1016/j.ejrad.2020.108992
摘要

Abstract

Purpose

We aimed to propose a highly automatic and objective model named deep learning Radiomics of thyroid (DLRT) for the differential diagnosis of benign and malignant thyroid nodules from ultrasound (US) images.

Methods

We retrospectively enrolled and finally include US images and fine-needle aspiration biopsies from 1734 patients with 1750 thyroid nodules. A basic convolutional neural network (CNN) model, a transfer learning (TL) model, and a newly designed model named deep learning Radiomics of thyroid (DLRT) were used for the investigation. Their diagnostic accuracy was further compared with human observers (one senior and one junior US radiologist). Moreover, the robustness of DLRT over different US instruments was also validated. Analysis of receiver operating characteristic (ROC) curves were performed to calculate optimal area under it (AUC) for benign and malignant nodules. One observer helped to delineate the nodules.

Results

AUCs of DLRT were 0.96 (95% confidence interval [CI]: 0.94-0.98), 0.95 (95% confidence interval [CI]: 0.93-0.97) and 0.97 (95% confidence interval [CI]: 0.95-0.99) in the training, internal and external validation cohort, respectively, which were significantly better than other deep learning models (P < 0.01) and human observers (P < 0.001). No significant difference was found when applying DLRT on thyroid US images acquired from different US instruments.

Conclusions

DLRT shows the best overall performance comparing with other deep learning models and human observers. It holds great promise for improving the differential diagnosis of benign and malignant thyroid nodules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
田様应助Rohee采纳,获得10
3秒前
磕盐民工完成签到,获得积分10
3秒前
may发布了新的文献求助10
5秒前
图图完成签到 ,获得积分10
5秒前
江停发布了新的文献求助10
6秒前
6秒前
SONG发布了新的文献求助10
6秒前
书勋涛仔完成签到,获得积分20
7秒前
9秒前
陈展峰完成签到,获得积分10
9秒前
生动的天亦完成签到,获得积分10
10秒前
温凡之完成签到,获得积分10
11秒前
XSDXXZ发布了新的文献求助10
12秒前
小马甲应助LiuShenglan采纳,获得10
14秒前
牧云发布了新的文献求助10
14秒前
hbhbj完成签到,获得积分10
14秒前
16秒前
微醺我本天涯客完成签到,获得积分10
16秒前
17秒前
皇帝的床帘应助wwww采纳,获得30
19秒前
20秒前
小脸发布了新的文献求助10
21秒前
小学生发布了新的文献求助10
21秒前
小二郎应助温暖的碧彤采纳,获得10
22秒前
23秒前
23秒前
田様应助LLLL采纳,获得10
24秒前
叶子完成签到,获得积分10
24秒前
彭于晏应助YY采纳,获得10
25秒前
L061114完成签到 ,获得积分10
25秒前
25秒前
25秒前
caicai发布了新的文献求助10
26秒前
flora发布了新的文献求助10
28秒前
坚强的代曼完成签到,获得积分10
28秒前
赘婿应助张兮兮采纳,获得10
29秒前
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161577
求助须知:如何正确求助?哪些是违规求助? 2812863
关于积分的说明 7897487
捐赠科研通 2471775
什么是DOI,文献DOI怎么找? 1316151
科研通“疑难数据库(出版商)”最低求助积分说明 631219
版权声明 602112