Differential Diagnosis of Benign and Malignant Thyroid Nodules Using Deep Learning Radiomics of Thyroid Ultrasound Images

医学 甲状腺结节 鉴别诊断 接收机工作特性 置信区间 甲状腺 放射科 超声波 卷积神经网络 无线电技术 深度学习 人工智能 病理 内科学 计算机科学
作者
Hui Zhou,Yinhua Jin,Lei Dai,Meiwu Zhang,Yuqin Qiu,Kun Wang,Jie Tian,Jianjun Zheng
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:127: 108992-108992 被引量:77
标识
DOI:10.1016/j.ejrad.2020.108992
摘要

Abstract

Purpose

We aimed to propose a highly automatic and objective model named deep learning Radiomics of thyroid (DLRT) for the differential diagnosis of benign and malignant thyroid nodules from ultrasound (US) images.

Methods

We retrospectively enrolled and finally include US images and fine-needle aspiration biopsies from 1734 patients with 1750 thyroid nodules. A basic convolutional neural network (CNN) model, a transfer learning (TL) model, and a newly designed model named deep learning Radiomics of thyroid (DLRT) were used for the investigation. Their diagnostic accuracy was further compared with human observers (one senior and one junior US radiologist). Moreover, the robustness of DLRT over different US instruments was also validated. Analysis of receiver operating characteristic (ROC) curves were performed to calculate optimal area under it (AUC) for benign and malignant nodules. One observer helped to delineate the nodules.

Results

AUCs of DLRT were 0.96 (95% confidence interval [CI]: 0.94-0.98), 0.95 (95% confidence interval [CI]: 0.93-0.97) and 0.97 (95% confidence interval [CI]: 0.95-0.99) in the training, internal and external validation cohort, respectively, which were significantly better than other deep learning models (P < 0.01) and human observers (P < 0.001). No significant difference was found when applying DLRT on thyroid US images acquired from different US instruments.

Conclusions

DLRT shows the best overall performance comparing with other deep learning models and human observers. It holds great promise for improving the differential diagnosis of benign and malignant thyroid nodules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
柯一一应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
1秒前
CharlotteBlue应助科研通管家采纳,获得30
1秒前
柯一一应助科研通管家采纳,获得10
1秒前
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
机灵柚子应助科研通管家采纳,获得20
2秒前
Akim应助科研通管家采纳,获得10
2秒前
机灵柚子应助科研通管家采纳,获得20
2秒前
在水一方应助科研通管家采纳,获得20
2秒前
SYLH应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
柯一一应助科研通管家采纳,获得10
3秒前
田田发布了新的文献求助10
3秒前
华仔应助千灯采纳,获得10
3秒前
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
ddddd发布了新的文献求助10
3秒前
4秒前
清酒少年游完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
7秒前
MchemG应助巧可脆脆采纳,获得10
7秒前
打打应助巧可脆脆采纳,获得10
7秒前
科研通AI2S应助巧可脆脆采纳,获得10
7秒前
兴奋访旋完成签到,获得积分10
8秒前
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502655
关于积分的说明 11109426
捐赠科研通 3233441
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870650
科研通“疑难数据库(出版商)”最低求助积分说明 802141