Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries

材料科学 水溶液 离子 溶解 离子键合 阴极 储能 锂(药物) 化学工程 电解质 电池(电) 电极 热力学 物理化学 有机化学 化学 内分泌学 功率(物理) 工程类 物理 医学
作者
Kaiyue Zhu,Tao Wu,Shichen Sun,Wessel van den Bergh,Morgan Stefik,Kevin Huang
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:29: 60-70 被引量:211
标识
DOI:10.1016/j.ensm.2020.03.030
摘要

Rechargeable aqueous zinc ion batteries (ZIB) with near-neutral electrolytes are a promising candidate for stationary energy storage owing to their high-energy-density, high-safety, low-cost and environmental-friendliness. However, the development of ZIBs is currently hindered by the lack of high-performance cathode materials and a good understanding of the true ionic storage mechanism in cathodes. Herein, using a promising ZIB cathode, hydrated VO2 (denoted as H-VO2), as a model material, we carried out a systematic experimental and theoretical work to elucidate the ionic storage mechanisms. We show strong evidence that H+ and Zn2+ are synergistically involved in the ionic storage in H-VO2. The H+-insertion/extraction, which leads to a pH swing of the electrolyte, can be viewed as an indirect Zn2+-storage through a reversible precipitation/dissolution of Zn(OH)2 on the surface of H-VO2 cathode. The first-principles DFT calculations further reveal that H+ and Zn2+ have their own favorable insertion sites and migration pathways, but H+-insertion predominates in the initial discharge stage whereas Zn2+-insertion controls in the late discharge stage. Because of the synergetic H+/Zn2+ co-insertion, H-VO2-based ZIB exhibits a high capacity and stability at both low and high rates, e.g. 410 and 200 ​mAh g-1, 88% and 70% retention rate for 200 (~1500 ​h) and 3000 cycles (~215 ​h) at 0.1 and 5.0 ​A ​g-1, respectively. The new fundamental insights gained from this study deepen the understanding of aqueous Zn-ion battery chemistry for future development of advanced ZIB cathodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
reck完成签到,获得积分10
刚刚
pharmstudent发布了新的文献求助30
刚刚
小田完成签到,获得积分10
刚刚
小喵发布了新的文献求助10
1秒前
FashionBoy应助毛毛哦啊采纳,获得10
1秒前
Lucas应助Chen采纳,获得10
2秒前
强健的蚂蚁完成签到,获得积分20
2秒前
小宇发布了新的文献求助10
2秒前
斜杠武完成签到,获得积分20
2秒前
3秒前
伞兵龙发布了新的文献求助10
3秒前
RC_Wang应助科研小民工采纳,获得10
3秒前
sanben完成签到,获得积分10
3秒前
3秒前
_蝴蝶小姐完成签到,获得积分10
4秒前
诗轩发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
迟大猫应助乐乱采纳,获得10
6秒前
万能图书馆应助派大星采纳,获得10
7秒前
FashionBoy应助娜行采纳,获得10
8秒前
8秒前
传奇3应助后知后觉采纳,获得10
9秒前
9秒前
9秒前
科研通AI2S应助Chem is try采纳,获得10
9秒前
10秒前
a方舟发布了新的文献求助10
10秒前
寒冷书竹发布了新的文献求助10
10秒前
10秒前
hhh发布了新的文献求助10
10秒前
顾矜应助富婆嘉嘉子采纳,获得10
10秒前
10秒前
10秒前
11秒前
江风海韵完成签到,获得积分10
11秒前
火星上的从雪完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672