体内
基因沉默
肿瘤坏死因子α
钙
碱性磷酸酶
炎症
体外
材料科学
牙周炎
小干扰RNA
化学
生物物理学
分子生物学
医学
生物化学
转染
免疫学
酶
生物
内科学
基因
生物技术
冶金
作者
Taichi Tenkumo,Leonardo Rojas‐Sánchez,Juan Ramón Vanegas Sáenz,Toru Ogawa,Makiko Miyashita,Nobuhiro Yoda,Oleg Prymak,Viktoriya Sokolova,Keiichi Sasaki,Matthias Epple
标识
DOI:10.1016/j.actbio.2020.01.031
摘要
We developed a calcium phosphate-based paste containing siRNA against TNF-α and investigated its anti-inflammatory and bone-healing effects in vitro and in vivo in a rat periodontitis model. The bioactive spherical CaP/PEI/siRNA/SiO2 nanoparticles had a core diameter of 40–90 nm and a positive charge (+23 mV) that facilitated cellular uptake. The TNF- α gene silencing efficiency of the nanoparticles in J774.2 monocytes, gingival-derived cells, and bone marrow-derived cells was 12 ± 2%, 36 ± 8%, and 35 ± 22%, respectively. CaP/PEI/siRNA/SiO2 nanoparticles cancelled the suppression of alkaline phosphatase (ALP) activity in LPS-stimulated bone marrow-derived cells. In vivo, ALP mRNA was up-regulated, TNF-α mRNA was down-regulated, and the amount of released TNF-α was significantly reduced after topical application of the calcium phosphate-based paste containing siRNA-loaded nanoparticles. The number of TNF-α-positive cells in response to CaP/PEI/siRNA/SiO2 nanoparticle application was lower than that observed in the absence of siRNA. Elevated ALP activity and numerous TRAP-positive cells (osteoclasts) were observed in response to the application of all calcium phosphate pastes. These results demonstrate that local application of a paste consisting of siRNA-loaded calcium phosphate nanoparticles successfully induces TNF-α silencing in vitro and in vivo and removes the suppression of ALP activity stimulated by inflammation. We developed a calcium phosphate-based paste containing nanoparticles loaded with siRNA against TNF-α. The nanoparticles had a core diameter of 40–90 nm and positive charge (+23 mV). The anti-inflammatory and osteoinductive effects of the paste were investigated in vitro and in vivo in a rat periodontitis model. In vitro, the TNF-α gene silencing efficiency of the nanoparticles in J774.2 monocytes, gingival-derived cells, and bone marrow-derived cells was 12 ± 2%, 36 ± 8%, and 35 ± 22%, respectively. The ALP activity of bone marrow-derived cells was recovered. In vivo, TNF-α mRNA was down-regulated and the amount of released TNF-α was significantly reduced, whereas the ALP mRNA was up-regulated. Elevated ALP activity and TRAP-positive cells were observed by immunohistochemistry.
科研通智能强力驱动
Strongly Powered by AbleSci AI