Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2

染色质 基因座(遗传学) 计算生物学 人类基因组 染色体构象捕获 计算机科学 算法 生物 遗传学 基因组 DNA 基因 增强子 基因表达
作者
Arya Kaul,Sourya Bhattacharyya,Ferhat Ay
出处
期刊:Nature Protocols [Springer Nature]
卷期号:15 (3): 991-1012 被引量:182
标识
DOI:10.1038/s41596-019-0273-0
摘要

Fit-Hi-C is a programming application to compute statistical confidence estimates for Hi-C contact maps to identify significant chromatin contacts. By fitting a monotonically non-increasing spline, Fit-Hi-C captures the relationship between genomic distance and contact probability without any parametric assumption. The spline fit together with the correction of contact probabilities with respect to bin- or locus-specific biases accounts for previously characterized covariates impacting Hi-C contact counts. Fit-Hi-C is best applied for the study of mid-range (e.g., 20 kb–2 Mb for human genome) intra-chromosomal contacts; however, with the latest reimplementation, named FitHiC2, it is possible to perform genome-wide analysis for high-resolution Hi-C data, including all intra-chromosomal distances and inter-chromosomal contacts. FitHiC2 also offers a merging filter module, which eliminates indirect/bystander interactions, leading to significant reduction in the number of reported contacts without sacrificing recovery of key loops such as those between convergent CTCF binding sites. Here, we describe how to apply the FitHiC2 protocol to three use cases: (i) 5-kb resolution Hi-C data of chromosome 5 from GM12878 (a human lymphoblastoid cell line), (ii) 40-kb resolution whole-genome Hi-C data from IMR90 (human lung fibroblast), and (iii) budding yeast whole-genome Hi-C data at a single restriction cut site (EcoRI) resolution. The procedure takes ~12 h with preprocessing when all use cases are run sequentially (~4 h when run parallel). With the recent improvements in its implementation, FitHiC2 (8 processors and 16 GB memory) is also scalable to genome-wide analysis of the highest resolution (1 kb) Hi-C data available to date (~48 h with 32 GB peak memory). FitHiC2 is available through Bioconda, GitHub and the Python Package Index. Fit-Hi-C is a computational tool for identifying statistically significant contacts from Hi-C data. This protocol describes how to apply the new version, called FitHiC2, on high-resolution Hi-C data, demonstrating the added functionalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_r8YKvn完成签到,获得积分10
刚刚
徒玦完成签到 ,获得积分10
刚刚
1秒前
明亮的觅露完成签到,获得积分10
1秒前
科研通AI5应助君君采纳,获得30
2秒前
没钱吃团子完成签到,获得积分10
2秒前
科研通AI5应助橘柚溪采纳,获得10
2秒前
万能图书馆应助JimmyY采纳,获得10
2秒前
双shuang发布了新的文献求助10
3秒前
Aoia完成签到,获得积分10
3秒前
晓丹发布了新的文献求助10
3秒前
爆米花应助尕青年采纳,获得10
4秒前
可爱的函函应助xhl采纳,获得10
4秒前
不爱科研发布了新的文献求助20
5秒前
荷盖发布了新的文献求助30
5秒前
22鱼发布了新的文献求助10
6秒前
7秒前
7秒前
小巧的师发布了新的文献求助10
8秒前
9秒前
爆米花应助西番雅采纳,获得10
9秒前
10秒前
科研通AI5应助222222采纳,获得10
11秒前
11秒前
Wqian发布了新的文献求助10
12秒前
丘比特应助DoubleSea采纳,获得10
12秒前
高木同学完成签到,获得积分10
12秒前
寒冷寻桃完成签到 ,获得积分10
14秒前
大模型应助zino采纳,获得10
14秒前
helppppp发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
1hjcbc关注了科研通微信公众号
17秒前
wanci应助Xiaoqin采纳,获得10
17秒前
orixero应助zjzjzjzjzj采纳,获得10
17秒前
17秒前
loomsis发布了新的文献求助10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540304
求助须知:如何正确求助?哪些是违规求助? 3117769
关于积分的说明 9332287
捐赠科研通 2815471
什么是DOI,文献DOI怎么找? 1547621
邀请新用户注册赠送积分活动 721067
科研通“疑难数据库(出版商)”最低求助积分说明 712445