常量(计算机编程)
控制理论(社会学)
阻抗控制
灵活性(工程)
地铁列车时刻表
计算机科学
强化学习
变量(数学)
任务(项目管理)
过程(计算)
机器人
弹道
电阻抗
控制(管理)
人工智能
数学
工程类
电气工程
物理
数学分析
操作系统
程序设计语言
系统工程
统计
天文
作者
Yujing Wang,Hao Xu,Jiawei Luo,Yanpu Lei,Jinyu Xu,Hai‐Tao Zhang
标识
DOI:10.1007/978-3-030-66645-3_25
摘要
For traditional constant impedance control, the robot suffers from constant stiffness, poor flexibility, large wear and high energy consumption in the process of movement. To address these problems, a variable impedance control method based on reinforcement learning (RL) algorithm Deep Q Network (DQN) is proposed in this paper. Our method can optimize the reference trajectory and gain schedule simultaneously according to the completion of task and the complexity of surroundings. Simulation experiments show that, compared with the constant impedance control, the proposed algorithm can adjust impedance in real time while manipulator is executing the task, which implies a better compliance, less wear and less control energy.
科研通智能强力驱动
Strongly Powered by AbleSci AI