Procedural virtual reality simulation training for robotic surgery: a randomised controlled trial

虚拟现实 学习曲线 医学 机械人手术 模式 程序性知识 物理疗法 医学物理学 计算机科学 外科 人机交互 人工智能 知识库 社会科学 操作系统 社会学
作者
Nicholas Raison,Patrick Harrison,Takashige Abe,Abdüllatif Aydın,Kamran Ahmed,Prokar Dasgupta
出处
期刊:Surgical Endoscopy and Other Interventional Techniques [Springer Nature]
卷期号:35 (12): 6897-6902 被引量:25
标识
DOI:10.1007/s00464-020-08197-w
摘要

Abstract Background Virtual reality (VR) training is widely used for surgical training, supported by comprehensive, high-quality validation. Technological advances have enabled the development of procedural-based VR training. This study assesses the effectiveness of procedural VR compared to basic skills VR in minimally invasive surgery. Methods 26 novice participants were randomised to either procedural VR ( n = 13) or basic VR simulation ( n = 13). Both cohorts completed a structured training programme. Simulator metric data were used to plot learning curves. All participants then performed parts of a robotic radical prostatectomy (RARP) on a fresh frozen cadaver. Performances were compared against a cohort of 9 control participants without any training experience. Performances were video recorded and assessed blindly using GEARS post hoc. Results Learning curve analysis demonstrated improvements in technical skill for both training modalities although procedural training was associated with greater training effects. Any VR training resulted in significantly higher GEARS scores than no training (GEARS score 11.3 ± 0.58 vs. 8.8 ± 2.9, p = 0.002). Procedural VR training was found to be more effective than both basic VR training and no training (GEARS 11.9 ± 2.9 vs. 10.7 ± 2.8 vs. 8.8 ± 1.4, respectively, p = 0.03). Conclusions This trial has shown that a structured programme of procedural VR simulation is effective for robotic training with technical skills successfully transferred to a clinical task in cadavers. Further work to evaluate the role of procedural-based VR for more advanced surgical skills training is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助GC采纳,获得10
1秒前
renhu发布了新的文献求助10
1秒前
KAI完成签到,获得积分10
1秒前
Hello应助zyy采纳,获得30
2秒前
蓝桉完成签到,获得积分10
2秒前
KAI发布了新的文献求助10
3秒前
5秒前
6秒前
怪胎完成签到,获得积分10
6秒前
赘婿应助将将采纳,获得10
6秒前
6秒前
小夜完成签到,获得积分10
7秒前
琪qi发布了新的文献求助10
7秒前
Monologue完成签到 ,获得积分10
9秒前
nuoni完成签到 ,获得积分10
10秒前
10秒前
柳易槐发布了新的文献求助30
11秒前
11秒前
minion发布了新的文献求助10
11秒前
方半仙完成签到,获得积分10
11秒前
12秒前
vicluwang完成签到,获得积分10
12秒前
小屁孩完成签到,获得积分0
12秒前
13秒前
tzq发布了新的文献求助10
15秒前
16秒前
alex发布了新的文献求助10
16秒前
liuqi完成签到 ,获得积分10
16秒前
17秒前
浅尝离白给咕噜噜的求助进行了留言
18秒前
Fengliguantou发布了新的文献求助10
18秒前
19秒前
未语的阳光完成签到 ,获得积分10
19秒前
19秒前
19秒前
20秒前
22秒前
橘子汽水发布了新的文献求助10
22秒前
吃鱼鱼鱼完成签到,获得积分10
22秒前
香饽饽发布了新的文献求助10
22秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138062
求助须知:如何正确求助?哪些是违规求助? 2789039
关于积分的说明 7789616
捐赠科研通 2445478
什么是DOI,文献DOI怎么找? 1300354
科研通“疑难数据库(出版商)”最低求助积分说明 625902
版权声明 601046