Procedural virtual reality simulation training for robotic surgery: a randomised controlled trial

虚拟现实 学习曲线 医学 机械人手术 模式 程序性知识 物理疗法 医学物理学 计算机科学 外科 人机交互 人工智能 知识库 社会科学 操作系统 社会学
作者
Nicholas Raison,Patrick Harrison,Takashige Abe,Abdüllatif Aydın,Kamran Ahmed,Prokar Dasgupta
出处
期刊:Surgical Endoscopy and Other Interventional Techniques [Springer Nature]
卷期号:35 (12): 6897-6902 被引量:25
标识
DOI:10.1007/s00464-020-08197-w
摘要

Abstract Background Virtual reality (VR) training is widely used for surgical training, supported by comprehensive, high-quality validation. Technological advances have enabled the development of procedural-based VR training. This study assesses the effectiveness of procedural VR compared to basic skills VR in minimally invasive surgery. Methods 26 novice participants were randomised to either procedural VR ( n = 13) or basic VR simulation ( n = 13). Both cohorts completed a structured training programme. Simulator metric data were used to plot learning curves. All participants then performed parts of a robotic radical prostatectomy (RARP) on a fresh frozen cadaver. Performances were compared against a cohort of 9 control participants without any training experience. Performances were video recorded and assessed blindly using GEARS post hoc. Results Learning curve analysis demonstrated improvements in technical skill for both training modalities although procedural training was associated with greater training effects. Any VR training resulted in significantly higher GEARS scores than no training (GEARS score 11.3 ± 0.58 vs. 8.8 ± 2.9, p = 0.002). Procedural VR training was found to be more effective than both basic VR training and no training (GEARS 11.9 ± 2.9 vs. 10.7 ± 2.8 vs. 8.8 ± 1.4, respectively, p = 0.03). Conclusions This trial has shown that a structured programme of procedural VR simulation is effective for robotic training with technical skills successfully transferred to a clinical task in cadavers. Further work to evaluate the role of procedural-based VR for more advanced surgical skills training is required.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Winter发布了新的文献求助10
刚刚
希望天下0贩的0应助DD采纳,获得10
1秒前
1秒前
shamy夫妇完成签到,获得积分10
1秒前
郭翔完成签到,获得积分10
1秒前
1秒前
看不懂完成签到 ,获得积分10
1秒前
DDD发布了新的文献求助10
2秒前
嘿嘿应助小葡萄采纳,获得10
2秒前
2秒前
xiaoxiao完成签到,获得积分10
3秒前
陈慕枫发布了新的文献求助10
3秒前
dudunan完成签到 ,获得积分10
3秒前
长刀介错人完成签到,获得积分10
4秒前
111发布了新的文献求助10
6秒前
Sunshine完成签到,获得积分10
6秒前
天天快乐应助走远了采纳,获得10
6秒前
yy111完成签到,获得积分10
6秒前
名副棋实发布了新的文献求助10
7秒前
7秒前
柳絮旭完成签到 ,获得积分10
7秒前
张建凯完成签到,获得积分10
7秒前
hx完成签到 ,获得积分10
8秒前
崔梦婷完成签到,获得积分10
8秒前
blank12完成签到,获得积分10
8秒前
feiyu完成签到,获得积分10
8秒前
斑马不一般完成签到,获得积分10
8秒前
fengfeng完成签到,获得积分10
9秒前
mr_beard完成签到 ,获得积分10
9秒前
陈慕枫完成签到,获得积分10
9秒前
宽宽完成签到,获得积分10
9秒前
zz完成签到,获得积分10
9秒前
独行者完成签到,获得积分10
9秒前
躲哪个草完成签到 ,获得积分10
9秒前
可可派完成签到,获得积分10
9秒前
狐尔莫发布了新的文献求助10
10秒前
隐形曼青应助高贵振家采纳,获得30
10秒前
深情安青应助77采纳,获得10
10秒前
bkagyin应助zhourenpeng采纳,获得10
11秒前
Xu完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997