Procedural virtual reality simulation training for robotic surgery: a randomised controlled trial

虚拟现实 学习曲线 医学 机械人手术 模式 程序性知识 物理疗法 医学物理学 计算机科学 外科 人机交互 人工智能 知识库 社会科学 操作系统 社会学
作者
Nicholas Raison,Patrick Harrison,Takashige Abe,Abdüllatif Aydın,Kamran Ahmed,Prokar Dasgupta
出处
期刊:Surgical Endoscopy and Other Interventional Techniques [Springer Science+Business Media]
卷期号:35 (12): 6897-6902 被引量:25
标识
DOI:10.1007/s00464-020-08197-w
摘要

Abstract Background Virtual reality (VR) training is widely used for surgical training, supported by comprehensive, high-quality validation. Technological advances have enabled the development of procedural-based VR training. This study assesses the effectiveness of procedural VR compared to basic skills VR in minimally invasive surgery. Methods 26 novice participants were randomised to either procedural VR ( n = 13) or basic VR simulation ( n = 13). Both cohorts completed a structured training programme. Simulator metric data were used to plot learning curves. All participants then performed parts of a robotic radical prostatectomy (RARP) on a fresh frozen cadaver. Performances were compared against a cohort of 9 control participants without any training experience. Performances were video recorded and assessed blindly using GEARS post hoc. Results Learning curve analysis demonstrated improvements in technical skill for both training modalities although procedural training was associated with greater training effects. Any VR training resulted in significantly higher GEARS scores than no training (GEARS score 11.3 ± 0.58 vs. 8.8 ± 2.9, p = 0.002). Procedural VR training was found to be more effective than both basic VR training and no training (GEARS 11.9 ± 2.9 vs. 10.7 ± 2.8 vs. 8.8 ± 1.4, respectively, p = 0.03). Conclusions This trial has shown that a structured programme of procedural VR simulation is effective for robotic training with technical skills successfully transferred to a clinical task in cadavers. Further work to evaluate the role of procedural-based VR for more advanced surgical skills training is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
刚刚
刚刚
1秒前
sd发布了新的文献求助10
1秒前
赘婿应助我的文献呢采纳,获得20
3秒前
4秒前
无花果应助旺仔Mario采纳,获得10
4秒前
林海国发布了新的文献求助10
4秒前
汉堡包应助热情的达采纳,获得10
5秒前
思维隋发布了新的文献求助10
8秒前
Zzzzzzz完成签到 ,获得积分10
10秒前
思源应助sd采纳,获得10
11秒前
传奇3应助谨慎雪碧采纳,获得10
13秒前
丘比特应助甜美板栗采纳,获得10
17秒前
天天快乐应助小哈采纳,获得10
17秒前
范丞丞发布了新的文献求助10
18秒前
xx完成签到,获得积分10
22秒前
搜集达人应助冷傲迎梦采纳,获得10
22秒前
24秒前
27秒前
明亮无颜完成签到,获得积分10
27秒前
zhangyu应助科多兽骑士采纳,获得10
28秒前
29秒前
31秒前
潘潘发布了新的文献求助10
31秒前
缓慢稀完成签到,获得积分10
32秒前
明亮无颜发布了新的文献求助10
32秒前
木木完成签到 ,获得积分10
32秒前
小哈发布了新的文献求助10
33秒前
34秒前
小熊完成签到,获得积分10
35秒前
36秒前
38秒前
Rondab应助勤劳的梦凡采纳,获得10
39秒前
wang_yp完成签到,获得积分10
40秒前
热情的达发布了新的文献求助10
42秒前
42秒前
李健的粉丝团团长应助scq采纳,获得10
44秒前
贰壹完成签到,获得积分10
47秒前
domingo发布了新的文献求助10
49秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533801
关于积分的说明 11263775
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806113
邀请新用户注册赠送积分活动 882955
科研通“疑难数据库(出版商)”最低求助积分说明 809629