亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Matching Intensity for Image Visibility Graphs: A New Method to Extract Image Features

计算机科学 人工智能 能见度 模式识别(心理学) 卷积(计算机科学) 特征提取 图像(数学) 尺度不变特征变换 匹配(统计) 计算机视觉 特征(语言学) 图像纹理 图像处理 数学 人工神经网络 语言学 统计 物理 哲学 光学
作者
Dongxu Zhu,Sherehe Semba,Huijie Yang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 12611-12621 被引量:7
标识
DOI:10.1109/access.2021.3050747
摘要

Recently, the image visibility graphs (IVG) had introduced as simple algorithms by which images map into complex networks. However, current methods based on IVG use global statistical behaviors of the resulting graph to extract image features, which leads to loss of the local structural information of the image. To extract more informative image features by using the concept of IVG, we propose a new concept called matching intensity for image visibility graphs (MIIVG). The key idea of MIIVG is to separate the image into segments and represent the structural behavior of each with reference patterns and corresponding matching intensity. Theoretical analysis shows that the operation of MIIVG can be simplified to convolution operation and provides 256 convolution kernels with clear and apparent physical meaning, through which we can extract image features from multi-viewpoints and obtained more informative image features. Theoretical analysis and experiments demonstrate that MIIVG has a remarkable computing speed and is sufficiently stable against noise. Its high performance in image feature extraction we confirmed by two experiments. In keypoint matching experiments, MIIVG achieves a competitive result compared with SIFT. In texture classification experiments, compared with LBP, MIIVG is superior to LBP in calculation speed and classification effect. Compared with several current deep learning models, they all have the best feature extraction effect and very fast, but the features extracted by MIIVG are more concise. Also, MIIVG hardware requirements are lower, so it is easier to deploy. It is worth mentioning that MIIVG achieved 99.7% classification accuracy on the Multiband datasets, which is a state of the art performance on texture classification task of Multiband datasets and fully demonstrates the effectiveness of MIIVG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joanna发布了新的文献求助10
3秒前
shennie完成签到,获得积分10
3秒前
study1111发布了新的文献求助30
5秒前
Qian发布了新的文献求助10
5秒前
Leonard应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
gym完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
susu发布了新的文献求助10
11秒前
dcy完成签到,获得积分10
13秒前
沧海静音发布了新的文献求助10
14秒前
科目三应助gym采纳,获得10
14秒前
15秒前
糊涂的笑天完成签到 ,获得积分10
16秒前
wyh发布了新的文献求助10
16秒前
小马哥完成签到,获得积分10
18秒前
嵇元容发布了新的文献求助10
19秒前
susu完成签到,获得积分20
20秒前
陈末应助study1111采纳,获得10
21秒前
新123完成签到,获得积分10
21秒前
wyh完成签到,获得积分10
21秒前
充电宝应助wyh采纳,获得10
27秒前
Hello应助susu采纳,获得10
28秒前
32秒前
histamin完成签到,获得积分10
32秒前
Layen完成签到,获得积分20
32秒前
kbcbwb2002完成签到,获得积分0
32秒前
知足的憨人*-*完成签到,获得积分10
33秒前
荆玉豪完成签到 ,获得积分10
34秒前
36秒前
临子完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458817
求助须知:如何正确求助?哪些是违规求助? 4564805
关于积分的说明 14296938
捐赠科研通 4489857
什么是DOI,文献DOI怎么找? 2459372
邀请新用户注册赠送积分活动 1449054
关于科研通互助平台的介绍 1424535