已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Matching Intensity for Image Visibility Graphs: A New Method to Extract Image Features

计算机科学 人工智能 能见度 模式识别(心理学) 卷积(计算机科学) 特征提取 图像(数学) 尺度不变特征变换 匹配(统计) 计算机视觉 特征(语言学) 图像纹理 图像处理 数学 人工神经网络 语言学 统计 物理 哲学 光学
作者
Dongxu Zhu,Sherehe Semba,Huijie Yang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 12611-12621 被引量:7
标识
DOI:10.1109/access.2021.3050747
摘要

Recently, the image visibility graphs (IVG) had introduced as simple algorithms by which images map into complex networks. However, current methods based on IVG use global statistical behaviors of the resulting graph to extract image features, which leads to loss of the local structural information of the image. To extract more informative image features by using the concept of IVG, we propose a new concept called matching intensity for image visibility graphs (MIIVG). The key idea of MIIVG is to separate the image into segments and represent the structural behavior of each with reference patterns and corresponding matching intensity. Theoretical analysis shows that the operation of MIIVG can be simplified to convolution operation and provides 256 convolution kernels with clear and apparent physical meaning, through which we can extract image features from multi-viewpoints and obtained more informative image features. Theoretical analysis and experiments demonstrate that MIIVG has a remarkable computing speed and is sufficiently stable against noise. Its high performance in image feature extraction we confirmed by two experiments. In keypoint matching experiments, MIIVG achieves a competitive result compared with SIFT. In texture classification experiments, compared with LBP, MIIVG is superior to LBP in calculation speed and classification effect. Compared with several current deep learning models, they all have the best feature extraction effect and very fast, but the features extracted by MIIVG are more concise. Also, MIIVG hardware requirements are lower, so it is easier to deploy. It is worth mentioning that MIIVG achieved 99.7% classification accuracy on the Multiband datasets, which is a state of the art performance on texture classification task of Multiband datasets and fully demonstrates the effectiveness of MIIVG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Jasper应助轻松的小曾采纳,获得10
1秒前
酷波er应助内向的绿海采纳,获得10
4秒前
充电宝应助内向的绿海采纳,获得10
4秒前
鈮宝完成签到 ,获得积分10
4秒前
WerWu完成签到,获得积分0
7秒前
7秒前
8秒前
医疗废物专用车乘客完成签到,获得积分10
10秒前
小曾发布了新的文献求助10
11秒前
wwt发布了新的文献求助10
13秒前
FashionBoy应助内向的绿海采纳,获得10
16秒前
16秒前
三泥完成签到,获得积分10
16秒前
Fn完成签到 ,获得积分10
18秒前
Momomo应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得30
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
Momomo应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
Momomo应助科研通管家采纳,获得10
20秒前
Momomo应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得30
20秒前
20秒前
20秒前
21秒前
朱砂完成签到,获得积分10
22秒前
共享精神应助nickel采纳,获得10
22秒前
重要的水壶完成签到,获得积分10
23秒前
枝头树上的布谷鸟完成签到 ,获得积分10
23秒前
大智若愚骨头完成签到,获得积分10
24秒前
tigger完成签到 ,获得积分10
24秒前
Elthrai完成签到 ,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493621
求助须知:如何正确求助?哪些是违规求助? 4591657
关于积分的说明 14434342
捐赠科研通 4524055
什么是DOI,文献DOI怎么找? 2478579
邀请新用户注册赠送积分活动 1463596
关于科研通互助平台的介绍 1436426