Matching Intensity for Image Visibility Graphs: A New Method to Extract Image Features

计算机科学 人工智能 能见度 模式识别(心理学) 卷积(计算机科学) 特征提取 图像(数学) 尺度不变特征变换 匹配(统计) 计算机视觉 特征(语言学) 图像纹理 图像处理 数学 人工神经网络 统计 光学 物理 哲学 语言学
作者
Dongxu Zhu,Sherehe Semba,Huijie Yang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 12611-12621 被引量:7
标识
DOI:10.1109/access.2021.3050747
摘要

Recently, the image visibility graphs (IVG) had introduced as simple algorithms by which images map into complex networks. However, current methods based on IVG use global statistical behaviors of the resulting graph to extract image features, which leads to loss of the local structural information of the image. To extract more informative image features by using the concept of IVG, we propose a new concept called matching intensity for image visibility graphs (MIIVG). The key idea of MIIVG is to separate the image into segments and represent the structural behavior of each with reference patterns and corresponding matching intensity. Theoretical analysis shows that the operation of MIIVG can be simplified to convolution operation and provides 256 convolution kernels with clear and apparent physical meaning, through which we can extract image features from multi-viewpoints and obtained more informative image features. Theoretical analysis and experiments demonstrate that MIIVG has a remarkable computing speed and is sufficiently stable against noise. Its high performance in image feature extraction we confirmed by two experiments. In keypoint matching experiments, MIIVG achieves a competitive result compared with SIFT. In texture classification experiments, compared with LBP, MIIVG is superior to LBP in calculation speed and classification effect. Compared with several current deep learning models, they all have the best feature extraction effect and very fast, but the features extracted by MIIVG are more concise. Also, MIIVG hardware requirements are lower, so it is easier to deploy. It is worth mentioning that MIIVG achieved 99.7% classification accuracy on the Multiband datasets, which is a state of the art performance on texture classification task of Multiband datasets and fully demonstrates the effectiveness of MIIVG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cbb发布了新的文献求助10
刚刚
idemipere发布了新的文献求助10
刚刚
独特冷荷给独特冷荷的求助进行了留言
1秒前
1秒前
2秒前
思源应助奇异物质采纳,获得10
2秒前
FashionBoy应助药化行者采纳,获得10
2秒前
慧灰huihui发布了新的文献求助10
3秒前
3秒前
王相博完成签到,获得积分10
4秒前
充电宝应助土豪的雪巧采纳,获得10
5秒前
5秒前
Alan发布了新的文献求助10
6秒前
6秒前
yznfly应助认真哈密瓜采纳,获得30
7秒前
yznfly应助认真哈密瓜采纳,获得30
7秒前
王志霞发布了新的文献求助10
8秒前
8秒前
9秒前
安静的雨完成签到,获得积分10
9秒前
shiyuhangsyh发布了新的文献求助10
11秒前
易酰水烊酸完成签到,获得积分10
11秒前
刘科发布了新的文献求助10
12秒前
万能图书馆应助幽默白易采纳,获得10
12秒前
HHHSean完成签到,获得积分10
12秒前
CR7应助Foldog采纳,获得20
12秒前
Yuri发布了新的文献求助10
13秒前
13秒前
14秒前
小二郎应助xmm采纳,获得10
14秒前
医者发布了新的文献求助10
14秒前
滕擎完成签到,获得积分10
14秒前
15秒前
16秒前
搜集达人应助鲜艳的手链采纳,获得10
16秒前
17秒前
昏睡的蟠桃应助LaTeXer采纳,获得100
17秒前
肉肉完成签到,获得积分20
17秒前
18秒前
小醒发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794