Matching Intensity for Image Visibility Graphs: A New Method to Extract Image Features

计算机科学 人工智能 能见度 模式识别(心理学) 卷积(计算机科学) 特征提取 图像(数学) 尺度不变特征变换 匹配(统计) 计算机视觉 特征(语言学) 图像纹理 图像处理 数学 人工神经网络 语言学 统计 物理 哲学 光学
作者
Dongxu Zhu,Sherehe Semba,Huijie Yang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 12611-12621 被引量:7
标识
DOI:10.1109/access.2021.3050747
摘要

Recently, the image visibility graphs (IVG) had introduced as simple algorithms by which images map into complex networks. However, current methods based on IVG use global statistical behaviors of the resulting graph to extract image features, which leads to loss of the local structural information of the image. To extract more informative image features by using the concept of IVG, we propose a new concept called matching intensity for image visibility graphs (MIIVG). The key idea of MIIVG is to separate the image into segments and represent the structural behavior of each with reference patterns and corresponding matching intensity. Theoretical analysis shows that the operation of MIIVG can be simplified to convolution operation and provides 256 convolution kernels with clear and apparent physical meaning, through which we can extract image features from multi-viewpoints and obtained more informative image features. Theoretical analysis and experiments demonstrate that MIIVG has a remarkable computing speed and is sufficiently stable against noise. Its high performance in image feature extraction we confirmed by two experiments. In keypoint matching experiments, MIIVG achieves a competitive result compared with SIFT. In texture classification experiments, compared with LBP, MIIVG is superior to LBP in calculation speed and classification effect. Compared with several current deep learning models, they all have the best feature extraction effect and very fast, but the features extracted by MIIVG are more concise. Also, MIIVG hardware requirements are lower, so it is easier to deploy. It is worth mentioning that MIIVG achieved 99.7% classification accuracy on the Multiband datasets, which is a state of the art performance on texture classification task of Multiband datasets and fully demonstrates the effectiveness of MIIVG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力菠萝发布了新的文献求助10
刚刚
英姑应助TB123采纳,获得10
1秒前
英俊愚志发布了新的文献求助10
1秒前
Rsoup完成签到,获得积分10
1秒前
Tomma完成签到,获得积分10
1秒前
2秒前
浮浮世世发布了新的文献求助50
2秒前
隐形曼青应助成就的醉香采纳,获得10
2秒前
elaine完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
豆子完成签到,获得积分10
3秒前
小羊闲庭信步完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
adela发布了新的文献求助10
6秒前
仪飞冲天小女警完成签到,获得积分10
6秒前
Kiki完成签到,获得积分10
6秒前
Animagus完成签到,获得积分10
6秒前
7秒前
xiaolv完成签到,获得积分10
7秒前
7秒前
优雅含莲完成签到 ,获得积分10
7秒前
整齐便当完成签到,获得积分10
7秒前
阿方完成签到,获得积分10
7秒前
馨妈完成签到 ,获得积分10
7秒前
天雨流芳完成签到 ,获得积分10
7秒前
zjfinal完成签到,获得积分10
7秒前
smalldesk完成签到,获得积分10
8秒前
8秒前
活力菠萝完成签到,获得积分10
8秒前
小广完成签到,获得积分10
8秒前
Tao完成签到,获得积分10
9秒前
10秒前
汉堡包应助呢喃采纳,获得10
10秒前
成就的醉香完成签到,获得积分10
10秒前
兰先生发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439237
求助须知:如何正确求助?哪些是违规求助? 4550227
关于积分的说明 14223399
捐赠科研通 4471161
什么是DOI,文献DOI怎么找? 2450269
邀请新用户注册赠送积分活动 1441159
关于科研通互助平台的介绍 1417797