Identification of Rice Varieties and Adulteration Using Gas Chromatography-Ion Mobility Spectrometry

支持向量机 Softmax函数 人工智能 模式识别(心理学) 计算机科学 鉴别器 离子迁移光谱法 分类器(UML) 随机森林 线性判别分析 人工神经网络 色谱法 质谱法 化学 电信 探测器
作者
Xingang Ju,Feiyu Lian,Hongyi Ge,Yuying Jiang,Yuan Zhang,Degang Xu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 18222-18234 被引量:12
标识
DOI:10.1109/access.2021.3051685
摘要

To solve the problems existing in traditional biochemical methods, such as complex sample pretreatment requirements, tedious detection processes and low detection accuracies with respect to rice species and adulteration, the volatile flavor substances of five kinds of rice are detected using headspace-gas chromatography-ion mobility spectrometry (HGC-IMS) to effectively identify the quality of rice and adulterated rice. The ion migration fingerprint spectra of five kinds of rice are identified using a semi-supervised generative adversarial network (SSGAN). We replace the output layer of the discriminator in a GAN with a softmax classifier, thus extending the GAN to a semi-supervised GAN. We define additional category tags for generated samples to guide the training process. Semi-supervised training is used to optimize the network parameters, and the trained discriminant network is used for classifying HGC-IMS images. The experimental results show that the prediction accuracy of the model reaches 98.00%, which is significantly higher than the rates achieved by other models, such as a decision tree, a support vector machine (SVM), improved SVM models (LS-SVM and PCA-SVM) and local geometric structure Fisher analysis (LGSFA); 98.00% is also higher than the prediction accuracies of the VGGNet, ResNet and Fast RCNN deep learning models. The experimental results also show that the accuracy of HGC-IMS image classification for identifying adulterated rice reaches 97.30%, which is higher than those of traditional chromatographic or spectral methods. The proposed method overcomes the shortcomings of some intelligent algorithms regarding the application of ion migration spectra and is feasible for accurately predicting rice varieties and adulterated rice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Gao发布了新的文献求助30
2秒前
RicTcuceN_发布了新的文献求助10
3秒前
英勇代荷完成签到,获得积分20
3秒前
Orange应助Eric采纳,获得10
11秒前
我爱科研完成签到,获得积分10
13秒前
乐悠完成签到 ,获得积分10
18秒前
18秒前
研友_8DVEpn完成签到,获得积分10
19秒前
阳光血茗完成签到,获得积分10
19秒前
21秒前
研友_8DVEpn发布了新的文献求助80
23秒前
Alinf完成签到,获得积分10
24秒前
yoyo完成签到 ,获得积分10
28秒前
白小超人完成签到 ,获得积分10
28秒前
天色青青发布了新的文献求助10
31秒前
32秒前
funny完成签到,获得积分10
35秒前
SciGPT应助深情的若冰采纳,获得10
37秒前
往返自然完成签到,获得积分10
37秒前
周晏平发布了新的文献求助10
38秒前
SciGPT应助suiwuya采纳,获得10
40秒前
41秒前
42秒前
不安青牛应助科研通管家采纳,获得10
42秒前
43秒前
43秒前
领导范儿应助科研通管家采纳,获得10
43秒前
乐乐应助科研通管家采纳,获得10
43秒前
情怀应助科研通管家采纳,获得10
43秒前
平淡驳完成签到 ,获得积分10
43秒前
43秒前
lz完成签到 ,获得积分10
43秒前
43秒前
不安青牛应助科研通管家采纳,获得10
43秒前
iNk应助科研通管家采纳,获得10
43秒前
不安青牛应助科研通管家采纳,获得10
43秒前
43秒前
iNk应助科研通管家采纳,获得10
43秒前
Thea完成签到,获得积分10
44秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352191
求助须知:如何正确求助?哪些是违规求助? 2977475
关于积分的说明 8679676
捐赠科研通 2658452
什么是DOI,文献DOI怎么找? 1455793
科研通“疑难数据库(出版商)”最低求助积分说明 674095
邀请新用户注册赠送积分活动 664651