亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explainable artificial intelligence to detect atrial fibrillation using electrocardiogram

医学 可解释性 心房颤动 心脏病学 接收机工作特性 内科学 人工智能 计算机科学
作者
Yong-Yeon Jo,Younghoon Cho,Soo Youn Lee,Joon-myoung Kwon,Kyung‐Hee Kim,Ki‐Hyun Jeon,Soohyun Cho,Jinsik Park,Byung‐Hee Oh
出处
期刊:International Journal of Cardiology [Elsevier]
卷期号:328: 104-110 被引量:88
标识
DOI:10.1016/j.ijcard.2020.11.053
摘要

Introduction Early detection and intervention of atrial fibrillation (AF) is a cornerstone for effective treatment and prevention of mortality. Diverse deep learning models (DLMs) have been developed, but they could not be applied in clinical practice owing to their lack of interpretability. We developed an explainable DLM to detect AF using ECG and validated its performance using diverse formats of ECG. Methods We conducted a retrospective study. The Sejong ECG dataset comprising 128,399 ECGs was used to develop and internally validated the explainable DLM. DLM was developed with two feature modules, which could describe the reason for DLM decisions. DLM was external validated using data from 21,837, 10,605, and 8528 ECGs from PTB-XL, Chapman, and PhysioNet non-restricted datasets, respectively. The predictor variables were digitally stored ECGs, and the endpoints were AFs. Results During internal and external validation of the DLM, the area under the receiver operating characteristic curves (AUCs) of the DLM using a 12‑lead ECG in detecting AF were 0.997–0.999. The AUCs of the DLM with VAE using a 6‑lead and single‑lead ECG were 0.990–0.999. The AUCs of explainability about features such as rhythm irregularity and absence of P-wave were 0.961–0.993 and 0.983–0.993, respectively. Conclusions Our DLM successfully detected AF using diverse ECGs and described the reason for this decision. The results indicated that an explainable artificial intelligence methodology could be adopted to the DLM using ECG and enhance the transparency of the DLM for its application in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
137完成签到,获得积分20
10秒前
10秒前
16秒前
科研通AI6应助emnjkl采纳,获得10
20秒前
量子星尘发布了新的文献求助10
55秒前
1分钟前
烛夜黎发布了新的文献求助10
1分钟前
顾矜应助烛夜黎采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI6应助lulu采纳,获得10
2分钟前
科研通AI6应助lulu采纳,获得10
2分钟前
科研通AI6应助lulu采纳,获得10
2分钟前
科研通AI6应助lulu采纳,获得10
2分钟前
啦啦啦啦啦完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
ALpha发布了新的文献求助10
2分钟前
2分钟前
真实的瑾瑜完成签到 ,获得积分10
2分钟前
3分钟前
ALpha完成签到,获得积分10
3分钟前
3分钟前
科研小白菜完成签到,获得积分10
3分钟前
GL发布了新的文献求助10
3分钟前
3分钟前
3分钟前
聪明怜阳发布了新的文献求助10
3分钟前
orixero应助GL采纳,获得30
3分钟前
blenx完成签到,获得积分10
3分钟前
3分钟前
ZBQ发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
ying818k发布了新的文献求助10
4分钟前
4分钟前
lulu发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488538
求助须知:如何正确求助?哪些是违规求助? 4587379
关于积分的说明 14413773
捐赠科研通 4518750
什么是DOI,文献DOI怎么找? 2476038
邀请新用户注册赠送积分活动 1461532
关于科研通互助平台的介绍 1434442