多铁性
凝聚态物理
材料科学
六方晶系
极化(电化学)
外延
极化密度
失真(音乐)
纳米技术
物理
铁电性
光电子学
磁化
磁场
电介质
量子力学
结晶学
图层(电子)
放大器
化学
物理化学
CMOS芯片
作者
Feng‐Liang Liu,Changsong Xu,Shoudong Shen,Nana Li,H. W. Guo,Xujie Lü,Hongjun Xiang,L. Bellaïche,Jun Zhao,Lifeng Yin,Wenge Yang,Wenbin Wang,Jian Shen
出处
期刊:Physical review
日期:2019-12-03
卷期号:100 (21)
被引量:16
标识
DOI:10.1103/physrevb.100.214408
摘要
Hexagonal ferrites ($h\text{\ensuremath{-}}R\mathrm{Fe}{\mathrm{O}}_{3}$) have attracted great attention for their high ferroelectric transition temperature, strong magnetoelectric couplings, and tunable N\'eel temperature (${T}_{N}$) and electric polarization. While introducing structural distortion has been previously found to be effective to raise ${T}_{N}$ and polarization in $h\text{\ensuremath{-}}R\mathrm{Fe}{\mathrm{O}}_{3}$, it is generally difficult to create sizable structural distortion by common approaches including substrate-induced epitaxial strain and chemical doping. Here, we use high-pressure x-ray-diffraction measurements to show that pressure can generate large structural distortion and R-layer displacement of $h\text{\ensuremath{-}}R\mathrm{Fe}{\mathrm{O}}_{3}$, resulting with dramatically enhancement of polarization and ${T}_{N}$. Density-functional theory calculations reveal that the enlarged $c/a$ ratio results in an \ensuremath{\sim}70 K increase of ${T}_{N}$ along with a significant enhancement of ferroelectric polarization. Our results suggest that pressure is effective to tune structural distortions and related multiferroicity of the $h\text{\ensuremath{-}}R\mathrm{Fe}{\mathrm{O}}_{3}$ system, making $h\text{\ensuremath{-}}R\mathrm{Fe}{\mathrm{O}}_{3}$ a promising material for spintronic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI