钝化
钙钛矿(结构)
碘化物
卤化物
吡啶
材料科学
能量转换效率
晶界
化学工程
无机化学
光电子学
化学
结晶学
纳米技术
图层(电子)
有机化学
复合材料
工程类
微观结构
作者
Yitian Du,Jihuai Wu,Xinpeng Zhang,Qianjin Zhu,Mingjing Zhang,Xuping Liu,Yu Zou,Shibo Wang,Weihai Sun
标识
DOI:10.1016/j.jechem.2020.04.049
摘要
Perovskite solar cells have developed rapidly in the past decades. However, there are large amounts of ionic defects at the surface and grain boundaries of perovskite films which are detrimental to both the efficiency and stability of perovskite solar cells. Here, an organic halide salt pyridinium iodide (PyI) is used in cation–anion-mixed perovskite for surface defect passivation. Different from the treatment with Lewis base pyridine (Py) which can only bind to the under-coordinated Pb ions, zwitterion molecule PyI can not only fill negative charged iodine vacancies, but also interact with positive charged defects. Compared with Py treatment, PyI treatment results in smoother surface, less defect densities and non-radiative recombination in perovskite, leading to an improved VOC, negligible J–V hysteresis and stable performance of devices. As a result, the champion PyI-treated planar perovskite solar cell with a high VOC of 1.187 V achieves an efficiency of 21.42%, which is higher than 20.37% of Py-treated device, while the pristine device without any treatment gets an efficiency of 18.83% at the same experiment conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI