材料科学
量子点
纳米颗粒
碳量子点
电化学
碳纤维
纳米技术
氧化物
碳纳米颗粒
电极
冶金
复合材料
量子力学
复合数
物理
作者
Tamal Sarkar,Tarun Kumar Dhiman,Reena K. Sajwan,Smriti Sri,Pratima R. Solanki
出处
期刊:Nanotechnology
[IOP Publishing]
日期:2020-05-12
卷期号:31 (35): 355502-355502
被引量:31
标识
DOI:10.1088/1361-6528/ab925e
摘要
A report on the synthesis of carbon-quantum-dot-embedded iron oxide nanoparticles (CQD@Fe3O4NPs) and their improved electrochemical studies is presented. Fe3O4NPs and CQD@Fe3O4NPs were synthesized by the wet-chemical co-precipitation method. X-ray diffraction measurements exhibited pure cubic phase with Fd3m space group in Fe3O4NPs and CQD@Fe3O4NPs. Fourier-transform infrared spectroscopy measurements confirmed the functionalization of Fe3O4NPs with CQDs. Dynamic light scattering measurements revealed a hydrodynamic radius of 520 nm and 319 nm for Fe3O4NPs and CQD@Fe3O4NPs, respectively. Moreover, zeta potential measurements showed positively charged Fe3O4NPs and negatively charged CQD@Fe3O4NPs. High-resolution transmission electron microscopy measurements showed nearly spherical structure with an average size of around 7 nm for Fe3O4 in both samples, whereas CQDs were nearly 2 nm in size in CQD@Fe3O4NPs. A biocompatibility study showed that CQD@Fe3O4NPs were more biocompatible than the bare Fe3O4NPs. CQD@Fe3O4NPs were then dispersed in chitosan (CHIT) solution, and drop-casted onto an indium tin oxide (ITO) glass substrate for further study. Atomic force microscopy results showed improved surface roughness of the CQD@Fe3O4-CHIT/ITO electrode, providing a better biosensing platform. The electrochemical response studies of CQD@Fe3O4-CHIT/ITO also showed enhanced electrochemical signal compared to Fe3O4-CHIT/ITO electrodes. Thus, a CQD@Fe3O4-CHIT/ITO electrode was used for the detection of vitamin D2 (10-100 ng ml-1) using a differential pulse voltammetry technique. The sensitivity and limit of detection were obtained as 0.069 µA ng-1 ml cm-2 and 2.46 ng ml-1, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI