已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning Algorithms for Early Detection of Bone Metastases in an Experimental Rat Model

计算机科学 人工智能 深度学习 医学 算法 机器学习 人工神经网络 卷积神经网络 骨转移 癌症
作者
Stephan Ellmann,Lisa Seyler,Clarissa Gillmann,Vanessa Popp,Christoph Treutlein,Aline Bozec,Michael Uder,Tobias Bäuerle
出处
期刊:Journal of Visualized Experiments [MyJoVE Corporation]
卷期号: (162) 被引量:2
标识
DOI:10.3791/61235
摘要

Machine learning (ML) algorithms permit the integration of different features into a model to perform classification or regression tasks with an accuracy exceeding its constituents. This protocol describes the development of an ML algorithm to predict the growth of breast cancer bone macrometastases in a rat model before any abnormalities are observable with standard imaging methods. Such an algorithm can facilitate the detection of early metastatic disease (i.e., micrometastasis) that is regularly missed during staging examinations. The applied metastasis model is site-specific, meaning that the rats develop metastases exclusively in their right hind leg. The model's tumor-take rate is 60%-80%, with macrometastases becoming visible in magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) in a subset of animals 30 days after induction, whereas a second subset of animals exhibit no tumor growth. Starting from image examinations acquired at an earlier time point, this protocol describes the extraction of features that indicate tissue vascularization detected by MRI, glucose metabolism by PET/CT, and the subsequent determination of the most relevant features for the prediction of macrometastatic disease. These features are then fed into a model-averaged neural network (avNNet) to classify the animals into one of two groups: one that will develop metastases and the other that will not develop any tumors. The protocol also describes the calculation of standard diagnostic parameters, such as overall accuracy, sensitivity, specificity, negative/positive predictive values, likelihood ratios, and the development of a receiver operating characteristic. An advantage of the proposed protocol is its flexibility, as it can be easily adapted to train a plethora of different ML algorithms with adjustable combinations of an unlimited number of features. Moreover, it can be used to analyze different problems in oncology, infection, and inflammation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jingjing发布了新的文献求助10
1秒前
3秒前
搜集达人应助LDY采纳,获得10
6秒前
共享精神应助棠梨煎雪采纳,获得10
6秒前
accept完成签到,获得积分10
6秒前
小熊5号完成签到,获得积分10
9秒前
Sheng完成签到 ,获得积分10
10秒前
loga80完成签到,获得积分0
12秒前
卷卷完成签到 ,获得积分10
12秒前
hhxx完成签到,获得积分10
12秒前
13秒前
贾jia完成签到,获得积分10
14秒前
14秒前
17秒前
棠梨煎雪发布了新的文献求助10
19秒前
小熊5号发布了新的文献求助30
20秒前
自然惜灵完成签到 ,获得积分10
22秒前
22秒前
ccc完成签到,获得积分10
23秒前
23秒前
唐宋八大家完成签到,获得积分10
24秒前
27秒前
27秒前
刘田完成签到 ,获得积分10
28秒前
YUU发布了新的文献求助10
28秒前
完美世界应助科研通管家采纳,获得10
29秒前
传奇3应助科研通管家采纳,获得10
29秒前
深情安青应助科研通管家采纳,获得10
29秒前
Akim应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
彭于晏应助科研通管家采纳,获得10
29秒前
29秒前
彭于晏应助文静翅膀采纳,获得10
29秒前
33秒前
今后应助直率的钢铁侠采纳,获得10
34秒前
徒tu完成签到,获得积分20
35秒前
文刀大可完成签到 ,获得积分10
38秒前
38秒前
李健的小迷弟应助温温采纳,获得10
40秒前
41秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142320
求助须知:如何正确求助?哪些是违规求助? 2793260
关于积分的说明 7806108
捐赠科研通 2449516
什么是DOI,文献DOI怎么找? 1303345
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601300