亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study

判别式 机器学习 召回 二元分类 光学相干层析成像 深度学习 计算机科学 医学影像学 精确性和召回率 模式识别(心理学) 编码(社会科学) 人工智能 医学 心理学 支持向量机 放射科 数学 统计 认知心理学
作者
Livia Faes,Siegfried Wagner,Dun Jack Fu,Xiaoxuan Liu,Edward Korot,Joseph R. Ledsam,Trevor Back,Reena Chopra,Nikolas Pontikos,Christoph Kern,Gabriella Moraes,Martin Schmid,Dawn A. Sim,Konstantinos Balaskas,Lucas M. Bachmann,Alastair K. Denniston,Pearse A. Keane
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:1 (5): e232-e242 被引量:245
标识
DOI:10.1016/s2589-7500(19)30108-6
摘要

BackgroundDeep learning has the potential to transform health care; however, substantial expertise is required to train such models. We sought to evaluate the utility of automated deep learning software to develop medical image diagnostic classifiers by health-care professionals with no coding—and no deep learning—expertise.MethodsWe used five publicly available open-source datasets: retinal fundus images (MESSIDOR); optical coherence tomography (OCT) images (Guangzhou Medical University and Shiley Eye Institute, version 3); images of skin lesions (Human Against Machine [HAM] 10000), and both paediatric and adult chest x-ray (CXR) images (Guangzhou Medical University and Shiley Eye Institute, version 3 and the National Institute of Health [NIH] dataset, respectively) to separately feed into a neural architecture search framework, hosted through Google Cloud AutoML, that automatically developed a deep learning architecture to classify common diseases. Sensitivity (recall), specificity, and positive predictive value (precision) were used to evaluate the diagnostic properties of the models. The discriminative performance was assessed using the area under the precision recall curve (AUPRC). In the case of the deep learning model developed on a subset of the HAM10000 dataset, we did external validation using the Edinburgh Dermofit Library dataset.FindingsDiagnostic properties and discriminative performance from internal validations were high in the binary classification tasks (sensitivity 73·3–97·0%; specificity 67–100%; AUPRC 0·87–1·00). In the multiple classification tasks, the diagnostic properties ranged from 38% to 100% for sensitivity and from 67% to 100% for specificity. The discriminative performance in terms of AUPRC ranged from 0·57 to 1·00 in the five automated deep learning models. In an external validation using the Edinburgh Dermofit Library dataset, the automated deep learning model showed an AUPRC of 0·47, with a sensitivity of 49% and a positive predictive value of 52%.InterpretationAll models, except the automated deep learning model trained on the multilabel classification task of the NIH CXR14 dataset, showed comparable discriminative performance and diagnostic properties to state-of-the-art performing deep learning algorithms. The performance in the external validation study was low. The quality of the open-access datasets (including insufficient information about patient flow and demographics) and the absence of measurement for precision, such as confidence intervals, constituted the major limitations of this study. The availability of automated deep learning platforms provide an opportunity for the medical community to enhance their understanding in model development and evaluation. Although the derivation of classification models without requiring a deep understanding of the mathematical, statistical, and programming principles is attractive, comparable performance to expertly designed models is limited to more elementary classification tasks. Furthermore, care should be placed in adhering to ethical principles when using these automated models to avoid discrimination and causing harm. Future studies should compare several application programming interfaces on thoroughly curated datasets.FundingNational Institute for Health Research and Moorfields Eye Charity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nefu biology发布了新的文献求助10
1秒前
2秒前
YANGLan完成签到,获得积分10
2秒前
万能图书馆应助安济采纳,获得10
3秒前
33发布了新的文献求助10
5秒前
nefu biology完成签到,获得积分20
7秒前
10秒前
z1jioyeah完成签到 ,获得积分10
11秒前
缥缈的砖头完成签到,获得积分10
13秒前
14秒前
15秒前
如意葶发布了新的文献求助10
19秒前
yz123发布了新的文献求助10
25秒前
JamesPei应助如意葶采纳,获得10
28秒前
breeze完成签到,获得积分10
28秒前
28秒前
37秒前
wang5945发布了新的文献求助10
41秒前
42秒前
乐乐应助相龙采纳,获得10
43秒前
44秒前
49秒前
上帝开玩笑完成签到,获得积分10
51秒前
Owen应助简qiu采纳,获得10
53秒前
雯小瑾完成签到 ,获得积分10
55秒前
56秒前
从容向真完成签到,获得积分10
1分钟前
1分钟前
brg1小王子完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
小胡爱科研完成签到 ,获得积分10
1分钟前
1分钟前
西西弗斯完成签到,获得积分0
1分钟前
小肖的KYT完成签到,获得积分10
1分钟前
Owen应助朴素千愁采纳,获得10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801847
关于积分的说明 7845829
捐赠科研通 2459207
什么是DOI,文献DOI怎么找? 1309091
科研通“疑难数据库(出版商)”最低求助积分说明 628638
版权声明 601727