Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study

判别式 机器学习 召回 二元分类 光学相干层析成像 深度学习 计算机科学 医学影像学 精确性和召回率 模式识别(心理学) 编码(社会科学) 人工智能 医学 心理学 支持向量机 放射科 数学 统计 认知心理学
作者
Livia Faes,Siegfried Wagner,Dun Jack Fu,Xiaoxuan Liu,Edward Korot,Joseph R. Ledsam,Trevor Back,Reena Chopra,Nikolas Pontikos,Christoph Kern,Gabriella Moraes,Martin Schmid,Dawn A. Sim,Konstantinos Balaskas,Lucas M. Bachmann,Alastair K. Denniston,Pearse A. Keane
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:1 (5): e232-e242 被引量:262
标识
DOI:10.1016/s2589-7500(19)30108-6
摘要

BackgroundDeep learning has the potential to transform health care; however, substantial expertise is required to train such models. We sought to evaluate the utility of automated deep learning software to develop medical image diagnostic classifiers by health-care professionals with no coding—and no deep learning—expertise.MethodsWe used five publicly available open-source datasets: retinal fundus images (MESSIDOR); optical coherence tomography (OCT) images (Guangzhou Medical University and Shiley Eye Institute, version 3); images of skin lesions (Human Against Machine [HAM] 10000), and both paediatric and adult chest x-ray (CXR) images (Guangzhou Medical University and Shiley Eye Institute, version 3 and the National Institute of Health [NIH] dataset, respectively) to separately feed into a neural architecture search framework, hosted through Google Cloud AutoML, that automatically developed a deep learning architecture to classify common diseases. Sensitivity (recall), specificity, and positive predictive value (precision) were used to evaluate the diagnostic properties of the models. The discriminative performance was assessed using the area under the precision recall curve (AUPRC). In the case of the deep learning model developed on a subset of the HAM10000 dataset, we did external validation using the Edinburgh Dermofit Library dataset.FindingsDiagnostic properties and discriminative performance from internal validations were high in the binary classification tasks (sensitivity 73·3–97·0%; specificity 67–100%; AUPRC 0·87–1·00). In the multiple classification tasks, the diagnostic properties ranged from 38% to 100% for sensitivity and from 67% to 100% for specificity. The discriminative performance in terms of AUPRC ranged from 0·57 to 1·00 in the five automated deep learning models. In an external validation using the Edinburgh Dermofit Library dataset, the automated deep learning model showed an AUPRC of 0·47, with a sensitivity of 49% and a positive predictive value of 52%.InterpretationAll models, except the automated deep learning model trained on the multilabel classification task of the NIH CXR14 dataset, showed comparable discriminative performance and diagnostic properties to state-of-the-art performing deep learning algorithms. The performance in the external validation study was low. The quality of the open-access datasets (including insufficient information about patient flow and demographics) and the absence of measurement for precision, such as confidence intervals, constituted the major limitations of this study. The availability of automated deep learning platforms provide an opportunity for the medical community to enhance their understanding in model development and evaluation. Although the derivation of classification models without requiring a deep understanding of the mathematical, statistical, and programming principles is attractive, comparable performance to expertly designed models is limited to more elementary classification tasks. Furthermore, care should be placed in adhering to ethical principles when using these automated models to avoid discrimination and causing harm. Future studies should compare several application programming interfaces on thoroughly curated datasets.FundingNational Institute for Health Research and Moorfields Eye Charity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Firefly完成签到,获得积分10
刚刚
zjh完成签到,获得积分20
刚刚
科研通AI5应助陆离采纳,获得10
1秒前
1秒前
芋泥螺蛳猫完成签到,获得积分10
1秒前
科研狗完成签到,获得积分10
2秒前
挡住所有坏运气888完成签到,获得积分10
2秒前
万能图书馆应助misalia采纳,获得10
2秒前
3秒前
分风吹完成签到 ,获得积分10
3秒前
杜嘟嘟发布了新的文献求助10
4秒前
QinMengyao发布了新的文献求助10
5秒前
李繁蕊发布了新的文献求助10
6秒前
眼睛大的鑫磊完成签到,获得积分10
6秒前
雪白红紫完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
Fareth发布了新的文献求助10
8秒前
Air云完成签到,获得积分10
8秒前
PakhoPHD完成签到 ,获得积分10
8秒前
玉麒麟完成签到,获得积分0
9秒前
Angela完成签到,获得积分10
9秒前
希望天下0贩的0应助小吴采纳,获得10
9秒前
9秒前
lilac应助苹果煎饼采纳,获得10
10秒前
大模型应助百宝采纳,获得10
10秒前
怕黑砖头完成签到,获得积分10
11秒前
12秒前
12秒前
花玥鹿完成签到,获得积分10
12秒前
cybbbbbb完成签到,获得积分10
12秒前
咳咳完成签到,获得积分10
12秒前
13秒前
SciGPT应助眼睛大的鑫磊采纳,获得10
13秒前
13秒前
Fareth完成签到,获得积分10
13秒前
领导范儿应助故意的绿竹采纳,获得10
13秒前
13秒前
复杂谷蓝完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740