Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study

判别式 机器学习 召回 二元分类 光学相干层析成像 深度学习 计算机科学 医学影像学 精确性和召回率 模式识别(心理学) 编码(社会科学) 人工智能 医学 心理学 支持向量机 放射科 数学 统计 认知心理学
作者
Livia Faes,Siegfried Wagner,Dun Jack Fu,Xiaoxuan Liu,Edward Korot,Joseph R. Ledsam,Trevor Back,Reena Chopra,Nikolas Pontikos,Christoph Kern,Gabriella Moraes,Martin Schmid,Dawn A. Sim,Konstantinos Balaskas,Lucas M. Bachmann,Alastair K. Denniston,Pearse A. Keane
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:1 (5): e232-e242 被引量:276
标识
DOI:10.1016/s2589-7500(19)30108-6
摘要

BackgroundDeep learning has the potential to transform health care; however, substantial expertise is required to train such models. We sought to evaluate the utility of automated deep learning software to develop medical image diagnostic classifiers by health-care professionals with no coding—and no deep learning—expertise.MethodsWe used five publicly available open-source datasets: retinal fundus images (MESSIDOR); optical coherence tomography (OCT) images (Guangzhou Medical University and Shiley Eye Institute, version 3); images of skin lesions (Human Against Machine [HAM] 10000), and both paediatric and adult chest x-ray (CXR) images (Guangzhou Medical University and Shiley Eye Institute, version 3 and the National Institute of Health [NIH] dataset, respectively) to separately feed into a neural architecture search framework, hosted through Google Cloud AutoML, that automatically developed a deep learning architecture to classify common diseases. Sensitivity (recall), specificity, and positive predictive value (precision) were used to evaluate the diagnostic properties of the models. The discriminative performance was assessed using the area under the precision recall curve (AUPRC). In the case of the deep learning model developed on a subset of the HAM10000 dataset, we did external validation using the Edinburgh Dermofit Library dataset.FindingsDiagnostic properties and discriminative performance from internal validations were high in the binary classification tasks (sensitivity 73·3–97·0%; specificity 67–100%; AUPRC 0·87–1·00). In the multiple classification tasks, the diagnostic properties ranged from 38% to 100% for sensitivity and from 67% to 100% for specificity. The discriminative performance in terms of AUPRC ranged from 0·57 to 1·00 in the five automated deep learning models. In an external validation using the Edinburgh Dermofit Library dataset, the automated deep learning model showed an AUPRC of 0·47, with a sensitivity of 49% and a positive predictive value of 52%.InterpretationAll models, except the automated deep learning model trained on the multilabel classification task of the NIH CXR14 dataset, showed comparable discriminative performance and diagnostic properties to state-of-the-art performing deep learning algorithms. The performance in the external validation study was low. The quality of the open-access datasets (including insufficient information about patient flow and demographics) and the absence of measurement for precision, such as confidence intervals, constituted the major limitations of this study. The availability of automated deep learning platforms provide an opportunity for the medical community to enhance their understanding in model development and evaluation. Although the derivation of classification models without requiring a deep understanding of the mathematical, statistical, and programming principles is attractive, comparable performance to expertly designed models is limited to more elementary classification tasks. Furthermore, care should be placed in adhering to ethical principles when using these automated models to avoid discrimination and causing harm. Future studies should compare several application programming interfaces on thoroughly curated datasets.FundingNational Institute for Health Research and Moorfields Eye Charity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔的蛋挞完成签到,获得积分10
刚刚
刚刚
和光同尘发布了新的文献求助10
刚刚
标致冬日完成签到,获得积分10
2秒前
黄瓜橙橙发布了新的文献求助10
3秒前
3秒前
Haley完成签到,获得积分10
3秒前
4秒前
我爱科研完成签到 ,获得积分10
4秒前
研学弟完成签到,获得积分10
5秒前
忧心的红酒完成签到,获得积分10
6秒前
7秒前
小瓶盖完成签到 ,获得积分10
7秒前
绍成完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
Dailei发布了新的文献求助10
9秒前
bkagyin应助tyzsail采纳,获得10
9秒前
jia完成签到,获得积分10
9秒前
luo完成签到 ,获得积分10
10秒前
MOMO完成签到 ,获得积分10
10秒前
zsj完成签到,获得积分10
12秒前
12秒前
还单身的湘完成签到,获得积分10
13秒前
我是老大应助忧心的红酒采纳,获得10
13秒前
14秒前
yin景景完成签到,获得积分10
14秒前
14秒前
Dailei完成签到,获得积分10
15秒前
稳重的安萱完成签到,获得积分10
15秒前
TJJJJJ发布了新的文献求助10
15秒前
16秒前
自信的孱发布了新的文献求助10
19秒前
yeyuchenfeng完成签到,获得积分10
19秒前
Akim应助我是唐不是傻采纳,获得10
19秒前
lv发布了新的文献求助10
19秒前
小二郎应助旺仔采纳,获得30
21秒前
21秒前
芒果完成签到 ,获得积分10
22秒前
doin发布了新的文献求助10
25秒前
tyzsail发布了新的文献求助10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027