Protein–protein interaction site prediction through combining local and global features with deep neural networks

计算机科学 卷积神经网络 序列(生物学) 人工智能 深度学习 源代码 人工神经网络 编码(集合论) 滑动窗口协议 蛋白质测序 机器学习 窗口(计算) 肽序列 生物 生物化学 遗传学 基因 操作系统 集合(抽象数据类型) 程序设计语言
作者
Min Zeng,Fuhao Zhang,Fang‐Xiang Wu,Yaohang Li,Jianxin Wang,Min Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:36 (4): 1114-1120 被引量:139
标识
DOI:10.1093/bioinformatics/btz699
摘要

Protein-protein interactions (PPIs) play important roles in many biological processes. Conventional biological experiments for identifying PPI sites are costly and time-consuming. Thus, many computational approaches have been proposed to predict PPI sites. Existing computational methods usually use local contextual features to predict PPI sites. Actually, global features of protein sequences are critical for PPI site prediction.A new end-to-end deep learning framework, named DeepPPISP, through combining local contextual and global sequence features, is proposed for PPI site prediction. For local contextual features, we use a sliding window to capture features of neighbors of a target amino acid as in previous studies. For global sequence features, a text convolutional neural network is applied to extract features from the whole protein sequence. Then the local contextual and global sequence features are combined to predict PPI sites. By integrating local contextual and global sequence features, DeepPPISP achieves the state-of-the-art performance, which is better than the other competing methods. In order to investigate if global sequence features are helpful in our deep learning model, we remove or change some components in DeepPPISP. Detailed analyses show that global sequence features play important roles in DeepPPISP.The DeepPPISP web server is available at http://bioinformatics.csu.edu.cn/PPISP/. The source code can be obtained from https://github.com/CSUBioGroup/DeepPPISP.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助ybwei2008_163采纳,获得10
1秒前
科目三应助傣妹纸如裴洱采纳,获得10
2秒前
jenningseastera应助杨衡采纳,获得10
3秒前
3秒前
橙色小瓶子完成签到,获得积分10
4秒前
Hus11221完成签到,获得积分10
5秒前
5秒前
谨慎的荧荧完成签到,获得积分10
7秒前
上官若男应助给大佬递茶采纳,获得10
7秒前
科烟生完成签到,获得积分10
8秒前
8秒前
研友_nPbeR8发布了新的文献求助10
8秒前
晴天完成签到 ,获得积分10
10秒前
善良的火完成签到 ,获得积分10
11秒前
11秒前
12秒前
书霂完成签到,获得积分10
12秒前
敏感雅香发布了新的文献求助10
13秒前
怕孤单的听寒完成签到,获得积分10
14秒前
壮观梦易发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
乐乐应助77采纳,获得30
17秒前
20秒前
研友_nPbeR8完成签到,获得积分10
20秒前
敏感雅香完成签到,获得积分20
21秒前
卡卡完成签到 ,获得积分10
21秒前
21秒前
单耳兔完成签到 ,获得积分10
22秒前
DH完成签到 ,获得积分10
23秒前
卡卡关注了科研通微信公众号
24秒前
我是老大应助xhz采纳,获得30
25秒前
Bao发布了新的文献求助10
27秒前
素律完成签到,获得积分10
27秒前
火星上含芙完成签到 ,获得积分10
28秒前
情怀应助modesty采纳,获得10
29秒前
lshao完成签到 ,获得积分10
30秒前
30秒前
30秒前
勤奋完成签到,获得积分0
31秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124544
捐赠科研通 3237326
什么是DOI,文献DOI怎么找? 1789102
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844