Protein–protein interaction site prediction through combining local and global features with deep neural networks

计算机科学 卷积神经网络 序列(生物学) 人工智能 深度学习 源代码 人工神经网络 编码(集合论) 滑动窗口协议 蛋白质测序 机器学习 窗口(计算) 肽序列 生物 生物化学 遗传学 基因 操作系统 集合(抽象数据类型) 程序设计语言
作者
Min Zeng,Fuhao Zhang,Fang‐Xiang Wu,Yaohang Li,Jianxin Wang,Min Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:36 (4): 1114-1120 被引量:139
标识
DOI:10.1093/bioinformatics/btz699
摘要

Protein-protein interactions (PPIs) play important roles in many biological processes. Conventional biological experiments for identifying PPI sites are costly and time-consuming. Thus, many computational approaches have been proposed to predict PPI sites. Existing computational methods usually use local contextual features to predict PPI sites. Actually, global features of protein sequences are critical for PPI site prediction.A new end-to-end deep learning framework, named DeepPPISP, through combining local contextual and global sequence features, is proposed for PPI site prediction. For local contextual features, we use a sliding window to capture features of neighbors of a target amino acid as in previous studies. For global sequence features, a text convolutional neural network is applied to extract features from the whole protein sequence. Then the local contextual and global sequence features are combined to predict PPI sites. By integrating local contextual and global sequence features, DeepPPISP achieves the state-of-the-art performance, which is better than the other competing methods. In order to investigate if global sequence features are helpful in our deep learning model, we remove or change some components in DeepPPISP. Detailed analyses show that global sequence features play important roles in DeepPPISP.The DeepPPISP web server is available at http://bioinformatics.csu.edu.cn/PPISP/. The source code can be obtained from https://github.com/CSUBioGroup/DeepPPISP.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助科研通管家采纳,获得30
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
林炎应助科研通管家采纳,获得20
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
一一应助科研通管家采纳,获得10
刚刚
YuanbinMao应助科研通管家采纳,获得10
1秒前
一一应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
小蘑菇应助顺顺采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
一一应助科研通管家采纳,获得10
1秒前
一一应助科研通管家采纳,获得10
1秒前
一一应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
1秒前
3秒前
4秒前
5秒前
abc完成签到 ,获得积分10
6秒前
科研通AI2S应助wzy5508采纳,获得10
6秒前
dzy1317发布了新的文献求助10
7秒前
Xyx发布了新的文献求助10
8秒前
9秒前
JamesPei应助左幻竹采纳,获得10
9秒前
思源应助撒西不理采纳,获得10
10秒前
10秒前
小二郎应助123采纳,获得10
10秒前
哈哈哈完成签到,获得积分10
11秒前
lou1219发布了新的文献求助10
11秒前
樱桃猴子发布了新的文献求助200
12秒前
14秒前
14秒前
15秒前
碧蓝羞花完成签到,获得积分10
16秒前
16秒前
16秒前
橘落不落发布了新的文献求助10
17秒前
魁梧的书芹完成签到 ,获得积分10
18秒前
dzy1317完成签到,获得积分10
19秒前
折木浮华发布了新的文献求助10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3237629
求助须知:如何正确求助?哪些是违规求助? 2883239
关于积分的说明 8229371
捐赠科研通 2551415
什么是DOI,文献DOI怎么找? 1379720
科研通“疑难数据库(出版商)”最低求助积分说明 648845
邀请新用户注册赠送积分活动 624487