Predicting daily diffuse horizontal solar radiation in various climatic regions of China using support vector machine and tree-based soft computing models with local and extrinsic climatic data

支持向量机 梯度升压 环境科学 均方误差 随机森林 日照时长 范畴变量 计算机科学 气象学 机器学习 统计 降水 数学 地理
作者
Junliang Fan,Xiukang Wang,Fucang Zhang,Xin Ma,Lifeng Wu
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:248: 119264-119264 被引量:56
标识
DOI:10.1016/j.jclepro.2019.119264
摘要

Knowledge of diffuse horizontal solar radiation (Rd) on horizontal surfaces is a prerequisite for the design and optimization of active and passive solar energy systems such as the solar illumination system within a building, but it is unavailable in many worldwide locations and commonly predicted by readily available climatic variables. However, reliable prediction of Rd is difficult when lack of complete or previous climatic data at the target station. This study evaluated the performance of support vector machine (SVM) and four tree-based soft computing models, i.e. M5 model tree (M5Tree), random forest (RF), extreme gradient boosting (XGBoost) and gradient boosting with categorical features support (CatBoost), for prediction of daily horizontal Rd when using limited local (Scenario 1) and extrinsic (Scenarios 2 and 3) climatic data. Six input combinations of daily global solar radiation (Rs), sunshine hour (n), maximum/minimum temperature (Tmax/Tmin) and relative humidity (RH) during 1996–2015 at 15 weather stations across various climatic rons of China were considered. The results demonstrated that, when lack of Rs, the average root mean square error (RMSE) was considerably increased across China (42.4%) in Scenario 1, especially in the (sub)tropical monsoon ron (68.3%). SVM offered the best combination of prediction accuracy and generalization capability in all scenarios, followed by CatBoost. CatBoost produced the closest daily Rd estimates to SVM and satisfactory generalization capability. In Scenario 2, CatBoost and SVM models developed with climatic data from Beijing gave the overall best daily Rd estimates over the 15 stations, while models developed with data from 14 weather stations in Scenario 3 produced even better and steadier Rd estimates across China compared with those in Scenario 2. The average computational time of SVM (6.6 s) for a single sample was approximately 1.9 times that of CatBoost (3.5 s) in Scenarios 1 and 2, while the corresponding value (842.6 s) was approximately 33.9 times that of CatBoost (24.9 s) in Scenario 3. Comprehensively considering prediction accuracy, generalization capability and computational efficiency, CatBoost is highly recommended to develop general models for daily Rd prediction in various climatic rons of China, particularly when lack of previous local climatic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵冬灵完成签到 ,获得积分10
刚刚
1秒前
ycc完成签到,获得积分10
1秒前
2秒前
王二哈完成签到,获得积分10
2秒前
sunrise_99完成签到,获得积分10
2秒前
3秒前
哈哈完成签到,获得积分10
3秒前
3秒前
zty发布了新的文献求助10
3秒前
受伤灵薇完成签到,获得积分10
4秒前
Tao完成签到,获得积分10
4秒前
kyn完成签到,获得积分10
4秒前
科研通AI2S应助CMUSK采纳,获得10
4秒前
苏苏完成签到,获得积分10
4秒前
帅子完成签到,获得积分10
5秒前
xj完成签到,获得积分10
5秒前
小木虫发布了新的文献求助10
6秒前
snowball完成签到 ,获得积分10
6秒前
7秒前
7秒前
澡雪完成签到,获得积分10
8秒前
sb发布了新的文献求助10
8秒前
9秒前
Paris发布了新的文献求助10
9秒前
9秒前
9秒前
快乐再出发完成签到,获得积分10
9秒前
大大完成签到,获得积分10
10秒前
MT完成签到,获得积分10
10秒前
在水一方应助wanwujiexu采纳,获得10
10秒前
木木发布了新的文献求助10
10秒前
11秒前
慕青应助静汉采纳,获得10
11秒前
11秒前
你没放假完成签到,获得积分10
11秒前
12秒前
i_jueloa完成签到,获得积分10
13秒前
13秒前
绿萝发布了新的文献求助10
14秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143062
求助须知:如何正确求助?哪些是违规求助? 2794082
关于积分的说明 7809850
捐赠科研通 2450395
什么是DOI,文献DOI怎么找? 1303818
科研通“疑难数据库(出版商)”最低求助积分说明 627066
版权声明 601384