A hierarchical latent response model for inferences about examinee engagement in terms of guessing and item‐level non‐response

脱离理论 心理学 项目反应理论 考试(生物学) 多级模型 社会心理学 认知心理学 计算机科学 发展心理学 机器学习 心理测量学 老年学 医学 古生物学 生物
作者
Esther Ulitzsch,Matthias von Davier,Steffi Pohl
出处
期刊:British Journal of Mathematical and Statistical Psychology [Wiley]
卷期号:73 (S1): 83-112 被引量:76
标识
DOI:10.1111/bmsp.12188
摘要

In low‐stakes assessments, test performance has few or no consequences for examinees themselves, so that examinees may not be fully engaged when answering the items. Instead of engaging in solution behaviour, disengaged examinees might randomly guess or generate no response at all. When ignored, examinee disengagement poses a severe threat to the validity of results obtained from low‐stakes assessments. Statistical modelling approaches in educational measurement have been proposed that account for non‐response or for guessing, but do not consider both types of disengaged behaviour simultaneously. We bring together research on modelling examinee engagement and research on missing values and present a hierarchical latent response model for identifying and modelling the processes associated with examinee disengagement jointly with the processes associated with engaged responses. To that end, we employ a mixture model that identifies disengagement at the item‐by‐examinee level by assuming different data‐generating processes underlying item responses and omissions, respectively, as well as response times associated with engaged and disengaged behaviour. By modelling examinee engagement with a latent response framework, the model allows assessing how examinee engagement relates to ability and speed as well as to identify items that are likely to evoke disengaged test‐taking behaviour. An illustration of the model by means of an application to real data is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助whn采纳,获得10
刚刚
刚刚
尹傲柏关注了科研通微信公众号
1秒前
1秒前
毛头侠完成签到,获得积分10
1秒前
迅速的鹤发布了新的文献求助10
2秒前
深情安青应助端庄的寄风采纳,获得10
3秒前
3秒前
迅速钥匙发布了新的文献求助10
5秒前
大模型应助谨慎珊采纳,获得10
6秒前
风中老三完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
加油呀发布了新的文献求助10
7秒前
7秒前
Orange应助qzxwsa采纳,获得10
9秒前
NexusExplorer应助Mango采纳,获得10
9秒前
会撒娇的一曲完成签到,获得积分10
9秒前
Jerome发布了新的文献求助10
9秒前
10秒前
10秒前
今后应助xu采纳,获得10
10秒前
ydning33发布了新的文献求助10
10秒前
多摩川的烟花少年完成签到,获得积分10
10秒前
大个应助Zoe采纳,获得30
11秒前
12秒前
12秒前
深情安青应助Annie采纳,获得10
12秒前
姆问题发布了新的文献求助10
13秒前
charlie完成签到,获得积分10
13秒前
ALICE完成签到,获得积分10
13秒前
14秒前
搜集达人应助简单谷梦采纳,获得10
14秒前
15秒前
16秒前
17秒前
ydning33完成签到,获得积分10
17秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145857
求助须知:如何正确求助?哪些是违规求助? 2797330
关于积分的说明 7823473
捐赠科研通 2453611
什么是DOI,文献DOI怎么找? 1305792
科研通“疑难数据库(出版商)”最低求助积分说明 627571
版权声明 601491