The MRC IEU OpenGWAS data infrastructure

Python(编程语言) 计算机科学 全基因组关联研究 数据映射 元数据 生命银行 数据挖掘 数据库 生物信息学 万维网 生物 操作系统 遗传学 基因 基因型 单核苷酸多态性
作者
Ben Elsworth,Matthew Lyon,Tessa Alexander,Yi Liu,Peter Matthews,Jon Hallett,P. J. Bates,Tom Palmer,Valeriia Haberland,George Davey Smith,Jie Zheng,Philip Haycock,Tom R. Gaunt,Gibran Hemani
标识
DOI:10.1101/2020.08.10.244293
摘要

Abstract Data generated by genome-wide association studies (GWAS) are growing fast with the linkage of biobank samples to health records, and expanding capture of high-dimensional molecular phenotypes. However the utility of these efforts can only be fully realised if their complete results are collected from their heterogeneous sources and formats, harmonised and made programmatically accessible. Here we present the OpenGWAS database, an open source, open access, scalable and high-performance cloud-based data infrastructure that imports and publishes complete GWAS summary datasets and metadata for the scientific community. Our import pipeline harmonises these datasets against dbSNP and the human genome reference sequence, generates summary reports and standardises the format of results and metadata. Users can access the data via a website, an application programming interface, R and Python packages, and also as downloadable files that can be rapidly queried in high performance computing environments. OpenGWAS currently contains 126 billion genetic associations from 14,582 complete GWAS datasets representing a range of different human phenotypes and disease outcomes across different populations. We developed R and Python packages to serve as conduits between these GWAS data sources and a range of available analytical tools, enabling Mendelian randomization, genetic colocalisation analysis, fine mapping, genetic correlation and locus visualisation. OpenGWAS is freely accessible at https://gwas.mrcieu.ac.uk , and has been designed to facilitate integration with third party analytical tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Lou完成签到,获得积分10
2秒前
科研通AI5应助kjwu采纳,获得10
4秒前
SYLH应助Yoki采纳,获得10
5秒前
无花果应助mmol采纳,获得10
7秒前
zho应助火星上笑容采纳,获得10
7秒前
jiayuanyuan完成签到,获得积分10
7秒前
Oi小鬼驳回了2222应助
9秒前
9秒前
9秒前
10秒前
11秒前
枫竹完成签到,获得积分10
11秒前
隐形曼青应助潮汐采纳,获得10
12秒前
wang5945发布了新的文献求助10
15秒前
15秒前
candleshi发布了新的文献求助10
15秒前
科研通AI5应助执着的觅山采纳,获得10
16秒前
kk发布了新的文献求助10
16秒前
雷雷发布了新的文献求助10
16秒前
香蕉汉堡完成签到 ,获得积分10
17秒前
19秒前
小文章完成签到,获得积分10
19秒前
科研通AI5应助瑶瑶要加油采纳,获得10
19秒前
CipherSage应助mmol采纳,获得10
20秒前
迅速的八宝粥完成签到 ,获得积分10
20秒前
candleshi完成签到,获得积分10
20秒前
雷雷完成签到,获得积分10
21秒前
22秒前
火星上笑容完成签到,获得积分10
22秒前
爆米花应助如意契采纳,获得10
22秒前
数学分析完成签到 ,获得积分10
23秒前
星辰大海应助小马过河采纳,获得10
23秒前
瑶瑶要加油完成签到,获得积分10
24秒前
25秒前
26秒前
28秒前
28秒前
28秒前
CC2333完成签到,获得积分10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737690
求助须知:如何正确求助?哪些是违规求助? 3281323
关于积分的说明 10024607
捐赠科研通 2998066
什么是DOI,文献DOI怎么找? 1645021
邀请新用户注册赠送积分活动 782472
科研通“疑难数据库(出版商)”最低求助积分说明 749814