材料科学
压缩传感
高斯过程
显微镜
过程(计算)
扫描探针显微镜
纳米技术
高斯分布
人工智能
计算机科学
光学
化学
物理
操作系统
计算化学
作者
Kyle P. Kelley,Maxim Ziatdinov,Liam Collins,Michael A. Susner,Rama K. Vasudevan,Nina Balke,Sergei V. Kalinin,Stephen Jesse
出处
期刊:Small
[Wiley]
日期:2020-08-11
卷期号:16 (37)
被引量:49
标识
DOI:10.1002/smll.202002878
摘要
Fast scanning probe microscopy enabled via machine learning allows for a broad range of nanoscale, temporally resolved physics to be uncovered. However, such examples for functional imaging are few in number. Here, using piezoresponse force microscopy (PFM) as a model application, a factor of 5.8 reduction in data collection using a combination of sparse spiral scanning with compressive sensing and Gaussian process regression reconstruction is demonstrated. It is found that even extremely sparse spiral scans offer strong reconstructions with less than 6% error for Gaussian process regression reconstructions. Further, the error associated with each reconstructive technique per reconstruction iteration is analyzed, finding the error is similar past ≈15 iterations, while at initial iterations Gaussian process regression outperforms compressive sensing. This study highlights the capabilities of reconstruction techniques when applied to sparse data, particularly sparse spiral PFM scans, with broad applications in scanning probe and electron microscopies.
科研通智能强力驱动
Strongly Powered by AbleSci AI