Deep Reinforcement Learning for Semisupervised Hyperspectral Band Selection

高光谱成像 强化学习 计算机科学 人工智能 卷积神经网络 正规化(语言学) 模式识别(心理学) 机器学习 选择(遗传算法) 深度学习 数学优化 数学
作者
Jie Feng,Di Li,Jing Gu,Xianghai Cao,Ronghua Shang,Xiangrong Zhang,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-19 被引量:79
标识
DOI:10.1109/tgrs.2021.3049372
摘要

Band selection is an important step in efficient processing of hyperspectral images (HSIs), which can be seen as the combination of powerful band search technique and effective evaluation criterion. The existing deep-learning-based methods make the network parameters sparse to search the spectral bands using threshold-based functions or regularization terms. These methods may lead to an intractable optimization problem. Furthermore, these methods need to repeatedly train deep networks for evaluating candidate band subsets. In this article, we formalize hyperspectral band selection as a reinforcement learning (RL) problem. Band search is regarded as a sequential decision-making process, where each state in the search space is a feasible band subset. To evaluate each state, a semisupervised convolutional neural network (CNN), called EvaluateNet, is constructed by adding the intraclass compactness constraint of both limited labeled and sufficient unlabeled samples. A simple stochastic band sampling method is designed to train EvaluateNet, making it possible to efficiently evaluate without any fine-tuning. In RL, new reward functions are defined by taking the EvaluateNet and the penalty of repeated selection into account. Finally, advantage actor–critic algorithms are designed to explore in the state space and select the band subset according to the expected accumulated reward. The experimental results on HSI data sets demonstrate the effectiveness and efficiency of the proposed algorithms for hyperspectral band selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
刘敏123456完成签到,获得积分20
3秒前
3秒前
等待若魔完成签到,获得积分10
4秒前
Peyton Why发布了新的文献求助10
4秒前
秀儿发布了新的文献求助10
5秒前
上官若男应助清爽安青采纳,获得10
7秒前
7秒前
浮游应助juanlajiao采纳,获得10
7秒前
刘敏123456发布了新的文献求助10
7秒前
7秒前
洁净灭男完成签到,获得积分10
8秒前
所所应助太叔夜南采纳,获得10
9秒前
9秒前
Peyton Why完成签到,获得积分10
10秒前
ajhs完成签到,获得积分20
11秒前
11秒前
尽快毕业发布了新的文献求助10
11秒前
桐桐应助swed采纳,获得10
11秒前
12秒前
貔貅发布了新的文献求助10
12秒前
12秒前
ajhs发布了新的文献求助30
14秒前
14秒前
15秒前
wjy321发布了新的文献求助10
16秒前
17秒前
酷炫小熊猫完成签到,获得积分20
17秒前
悟123完成签到 ,获得积分10
18秒前
坦率灵槐发布了新的文献求助10
18秒前
Destiny完成签到,获得积分10
19秒前
20秒前
太叔夜南发布了新的文献求助10
22秒前
22秒前
HSA完成签到,获得积分10
22秒前
沐熙完成签到 ,获得积分10
22秒前
十里关注了科研通微信公众号
23秒前
研友_LaNOdn发布了新的文献求助10
24秒前
double完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937