已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Reinforcement Learning for Semisupervised Hyperspectral Band Selection

高光谱成像 强化学习 计算机科学 人工智能 卷积神经网络 正规化(语言学) 模式识别(心理学) 机器学习 选择(遗传算法) 深度学习 数学优化 数学
作者
Jie Feng,Di Li,Jing Gu,Xianghai Cao,Ronghua Shang,Xiangrong Zhang,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-19 被引量:66
标识
DOI:10.1109/tgrs.2021.3049372
摘要

Band selection is an important step in efficient processing of hyperspectral images (HSIs), which can be seen as the combination of powerful band search technique and effective evaluation criterion. The existing deep-learning-based methods make the network parameters sparse to search the spectral bands using threshold-based functions or regularization terms. These methods may lead to an intractable optimization problem. Furthermore, these methods need to repeatedly train deep networks for evaluating candidate band subsets. In this article, we formalize hyperspectral band selection as a reinforcement learning (RL) problem. Band search is regarded as a sequential decision-making process, where each state in the search space is a feasible band subset. To evaluate each state, a semisupervised convolutional neural network (CNN), called EvaluateNet, is constructed by adding the intraclass compactness constraint of both limited labeled and sufficient unlabeled samples. A simple stochastic band sampling method is designed to train EvaluateNet, making it possible to efficiently evaluate without any fine-tuning. In RL, new reward functions are defined by taking the EvaluateNet and the penalty of repeated selection into account. Finally, advantage actor–critic algorithms are designed to explore in the state space and select the band subset according to the expected accumulated reward. The experimental results on HSI data sets demonstrate the effectiveness and efficiency of the proposed algorithms for hyperspectral band selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
gaoyang123完成签到 ,获得积分10
3秒前
4秒前
苏乘风完成签到,获得积分20
5秒前
5秒前
12发布了新的文献求助10
6秒前
JamesPei应助jovi采纳,获得10
7秒前
粗心的易云完成签到 ,获得积分10
8秒前
xiaoqi666发布了新的文献求助10
8秒前
堃kun发布了新的文献求助10
9秒前
小宇子发布了新的文献求助10
9秒前
爆米花应助coke采纳,获得10
10秒前
朱虹关注了科研通微信公众号
10秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
柯一一应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
12秒前
几两发布了新的文献求助10
14秒前
zhuhmed完成签到,获得积分10
18秒前
乐乐应助小宇子采纳,获得10
18秒前
20秒前
sy关注了科研通微信公众号
22秒前
23秒前
coke发布了新的文献求助10
24秒前
DRHOUSE发布了新的文献求助10
24秒前
任性白卉完成签到 ,获得积分10
25秒前
zm发布了新的文献求助10
26秒前
26秒前
Jasper应助Leo采纳,获得10
27秒前
曾泓跃完成签到 ,获得积分10
28秒前
嘉仔发布了新的文献求助10
31秒前
WXX发布了新的文献求助10
32秒前
33秒前
33秒前
传奇3应助风中的玲采纳,获得10
34秒前
34秒前
似水流年完成签到,获得积分10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959865
求助须知:如何正确求助?哪些是违规求助? 3506102
关于积分的说明 11127857
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789463
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021