CX3CR1型
免疫学
结肠炎
炎症性肠病
人口
溃疡性结肠炎
免疫系统
发病机制
医学
疾病
生物
趋化因子
病理
趋化因子受体
环境卫生
作者
Junyi Li,Haifeng Zhou,Xiaoxia Fu,Meng Zhang,Fei Sun,Heng Fan
标识
DOI:10.1016/j.imlet.2021.02.001
摘要
Inflammatory bowel disease (IBD), consisting of ulcerative colitis (UC) and Crohn's disease (CD), is featured by overactive immune response and enduring course of unrestrained colitis. Genetic predisposition and environmental factors are fundamental in disease progression. Notably, microbiota dysregulation and its interaction with host mucosal barrier perplex disease phenotype. Under experimental setting, distinct mouse models are established to mimic human colitis process, including infection induced dysbiosis, dextran sulfate sodium (DSS) etc. induced barrier destruction, anti-CD40 L induced innate immunity dominant colitis and T cell transfer colitis model. Thus, from a more detailed aspect, IBD is heterogeneous and can be further classified into different subtypes based on the specific etiological pathways. As a typical inflammatory disorder, various immune cell types are involved in IBD pathogenesis. Among them, macrophages are believed to play a pivotal role. CX3CR1+ macrophages, deriving from peripheral patrolling CD14+ Ly6Chi monocytes, are specified cell population dwelling in the gut. Accumulating evidence suggests that CX3CR1+ macrophages are critical for mucosal homeostasis and IBD pathogenesis, while some conflicts exist in current studies with both protective and harmful effects being revealed. Herein, we reviewed published literatures and found that the observed discrepancies stem from many aspects: the expression level of CX3CR1, the confounding dendritic cell subsets and most importantly, the different colitis stages and subtypes. Overall, CX3CR1 targeting strategy could be powerful weapon in fighting against colitis, but at the same time, the precise etiological and pathological mechanisms should be cautiously examined concerning the appropriate usage of CX3CR1 targeted therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI