Spiking Neural Network Regularization With Fixed and Adaptive Drop-Keep Probabilities

计算机科学 正规化(语言学) 人工神经网络 水准点(测量) 人工智能 有界函数 尖峰神经网络 辍学(神经网络) 算法 机器学习 数学 数学分析 大地测量学 地理
作者
Junhong Zhao,Jie Yang,Jun Wang,Wei Wu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 4096-4109 被引量:20
标识
DOI:10.1109/tnnls.2021.3055825
摘要

Dropout and DropConnect are two techniques to facilitate the regularization of neural network models, having achieved the state-of-the-art results in several benchmarks. In this paper, to improve the generalization capability of spiking neural networks (SNNs), the two drop techniques are first applied to the state-of-the-art SpikeProp learning algorithm resulting in two improved learning algorithms called SPDO (SpikeProp with Dropout) and SPDC (SpikeProp with DropConnect). In view that a higher membrane potential of a biological neuron implies a higher probability of neural activation, three adaptive drop algorithms, SpikeProp with Adaptive Dropout (SPADO), SpikeProp with Adaptive DropConnect (SPADC), and SpikeProp with Group Adaptive Drop (SPGAD), are proposed by adaptively adjusting the keep probability for training SNNs. A convergence theorem for SPDC is proven under the assumptions of the bounded norm of connection weights and a finite number of equilibria. In addition, the five proposed algorithms are carried out in a collaborative neurodynamic optimization framework to improve the learning performance of SNNs. The experimental results on the four benchmark data sets demonstrate that the three adaptive algorithms converge faster than SpikeProp, SPDO, and SPDC, and the generalization errors of the five proposed algorithms are significantly smaller than that of SpikeProp. Furthermore, the experimental results also show that the five algorithms based on collaborative neurodynamic optimization can be improved in terms of several measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ffffff发布了新的文献求助100
3秒前
MooN完成签到,获得积分10
3秒前
李健应助崔崔采纳,获得10
4秒前
赘婿应助吕不韦采纳,获得10
5秒前
5秒前
车厘子水门汀完成签到 ,获得积分10
6秒前
xr发布了新的文献求助10
6秒前
翁曼雁完成签到 ,获得积分10
10秒前
TRY关闭了TRY文献求助
10秒前
小张在努力完成签到 ,获得积分10
11秒前
搜集达人应助悄悄采纳,获得10
11秒前
研友_VZG7GZ应助xr采纳,获得10
11秒前
12秒前
ss13l完成签到,获得积分10
12秒前
13秒前
13秒前
崔崔发布了新的文献求助10
16秒前
渊思发布了新的文献求助10
17秒前
22秒前
小新同学完成签到,获得积分10
23秒前
昏睡的咖啡完成签到,获得积分10
23秒前
努力打个共完成签到,获得积分10
23秒前
无花果应助王鹏飞采纳,获得10
26秒前
化龙完成签到,获得积分10
26秒前
崔崔完成签到,获得积分10
27秒前
dali完成签到,获得积分10
31秒前
陈一完成签到 ,获得积分10
37秒前
募股小完成签到,获得积分10
41秒前
43秒前
大强完成签到,获得积分10
43秒前
44秒前
哈罗完成签到,获得积分10
46秒前
WMT完成签到 ,获得积分10
47秒前
N型半导体发布了新的文献求助10
48秒前
50秒前
50秒前
情怀应助N型半导体采纳,获得10
52秒前
Alex应助积极的初南采纳,获得20
52秒前
55秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966246
求助须知:如何正确求助?哪些是违规求助? 3511683
关于积分的说明 11159207
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343