Extended-State-Observer-Based Adaptive Control of Electrohydraulic Servomechanisms Without Velocity Measurement

控制理论(社会学) 观察员(物理) 国家观察员 计算机科学 控制工程 国家(计算机科学) 控制(管理) 工程类 非线性系统 物理 人工智能 算法 量子力学
作者
Wenxiang Deng,Jianyong Yao
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:25 (3): 1151-1161 被引量:164
标识
DOI:10.1109/tmech.2019.2959297
摘要

Velocity signal is difficult to obtain in practical electrohydraulic servomechanisms. Even though it can be approximately derived via numerical differentiation on position measurement, the strong noise effect will greatly deteriorate the achievable control performance. Hence, how to design a high-performance tracking controller without velocity measurement is of practical significance. In this paper, a practical adaptive tracking controller without velocity measurement is proposed for electrohydraulic servomechanisms. To estimate the unmeasurable velocity signal, an extended state observer (ESO) that also provides an estimate of the mismatched disturbance is constructed. The ESO uses the unknown parameter estimates updated by a novel adaptive law, which only depends on the actual position and desired trajectory. Moreover, the matched parametric uncertainty is also handled by online parameter adaptation and the matched disturbance is suppressed via a robust control law. The proposed ESO-based adaptive controller theoretically achieves an excellent asymptotic tracking performance when time-invariant modeling uncertainties exist. In the presence of time-variant modeling uncertainties, guaranteed transient performance and prescribed final tracking accuracy can also be achieved. The proposed control strategy bridges the gap between the adaptive control and disturbance observer-based control without using the velocity signal and preserves the performance results of both control methods while overcoming their practical performance limitations. Comparative experiments are performed on an actual servovalve-controlled double-rod hydraulic actuator to verify the superiority of the proposed control strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
若水发布了新的文献求助10
1秒前
1秒前
小橙子发布了新的文献求助10
1秒前
1秒前
yookia完成签到,获得积分10
2秒前
JianYugen完成签到,获得积分0
2秒前
重要手机完成签到 ,获得积分10
2秒前
bk201完成签到 ,获得积分10
2秒前
Sean完成签到,获得积分10
3秒前
3秒前
3秒前
wwwy007完成签到,获得积分10
3秒前
hlf完成签到,获得积分10
3秒前
May应助大水牛姐姐采纳,获得20
4秒前
4秒前
Ava应助夹夹采纳,获得10
4秒前
务实的紫伊完成签到,获得积分10
4秒前
愤怒的方盒完成签到,获得积分10
4秒前
倩倩呀完成签到,获得积分10
5秒前
摇摇奶昔发布了新的文献求助10
5秒前
阿俊完成签到,获得积分10
6秒前
yyyyyyyyyyyiiii完成签到 ,获得积分10
6秒前
跳跃完成签到 ,获得积分10
6秒前
果实发布了新的文献求助10
6秒前
zz发布了新的文献求助10
7秒前
简单发布了新的文献求助10
7秒前
科研吴彦祖完成签到 ,获得积分10
8秒前
8秒前
诸-z发布了新的文献求助20
8秒前
甜美坤完成签到 ,获得积分10
8秒前
PengHu完成签到,获得积分10
8秒前
10秒前
眼睛大羽毛完成签到 ,获得积分10
10秒前
10秒前
liu完成签到,获得积分20
10秒前
FashionBoy应助中午吃什么采纳,获得10
11秒前
11秒前
不能没有科研完成签到,获得积分10
11秒前
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149