ManifoldNet: A Deep Neural Network for Manifold-Valued Data With Applications

歧管(流体力学) 欧几里得空间 统计流形 计算机科学 数学 人工神经网络 黎曼流形 深度学习 人工智能 纯数学 域代数上的 信息几何学 曲率 几何学 工程类 机械工程 标量曲率
作者
Rudrasis Chakraborty,Jose Bouza,Jonathan H. Manton,Baba C. Vemuri
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:44 (2): 799-810 被引量:57
标识
DOI:10.1109/tpami.2020.3003846
摘要

Geometric deep learning is a relatively nascent field that has attracted significant attention in the past few years. This is partly due to the availability of data acquired from non-euclidean domains or features extracted from euclidean-space data that reside on smooth manifolds. For instance, pose data commonly encountered in computer vision reside in Lie groups, while covariance matrices that are ubiquitous in many fields and diffusion tensors encountered in medical imaging domain reside on the manifold of symmetric positive definite matrices. Much of this data is naturally represented as a grid of manifold-valued data. In this paper we present a novel theoretical framework for developing deep neural networks to cope with these grids of manifold-valued data inputs. We also present a novel architecture to realize this theory and call it the ManifoldNet. Analogous to vector spaces where convolutions are equivalent to computing weighted sums, manifold-valued data 'convolutions' can be defined using the weighted Fréchet Mean ([Formula: see text]). (This requires endowing the manifold with a Riemannian structure if it did not already come with one.) The hidden layers of ManifoldNet compute [Formula: see text]s of their inputs, where the weights are to be learnt. This means the data remain manifold-valued as they propagate through the hidden layers. To reduce computational complexity, we present a provably convergent recursive algorithm for computing the [Formula: see text]. Further, we prove that on non-constant sectional curvature manifolds, each [Formula: see text] layer is a contraction mapping and provide constructive evidence for its non-collapsibility when stacked in layers. This captures the two fundamental properties of deep network layers. Analogous to the equivariance of convolution in euclidean space to translations, we prove that the [Formula: see text] is equivariant to the action of the group of isometries admitted by the Riemannian manifold on which the data reside. To showcase the performance of ManifoldNet, we present several experiments using both computer vision and medical imaging data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助木易光军采纳,获得10
刚刚
1秒前
斯文初翠完成签到 ,获得积分10
1秒前
甜美的尔岚完成签到 ,获得积分10
1秒前
2秒前
2秒前
Eternal完成签到 ,获得积分10
2秒前
wt发布了新的文献求助20
4秒前
rosyw发布了新的文献求助10
4秒前
霸气的小土豆完成签到 ,获得积分10
4秒前
王缪芸发布了新的文献求助10
5秒前
lll完成签到 ,获得积分10
5秒前
蒲琪完成签到,获得积分10
5秒前
ningwu发布了新的文献求助10
6秒前
梁小雨完成签到 ,获得积分10
6秒前
万能图书馆应助DavidShaw采纳,获得10
7秒前
是danoo发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助30
11秒前
活力妙芙完成签到 ,获得积分10
11秒前
serapy完成签到,获得积分10
11秒前
12秒前
大个应助焦恩俊采纳,获得10
13秒前
酷波er应助执着皮皮虾采纳,获得10
13秒前
小叶子发布了新的文献求助10
13秒前
13秒前
大个应助liuliu采纳,获得10
14秒前
14秒前
11完成签到,获得积分10
15秒前
15秒前
16秒前
今夜有雨完成签到 ,获得积分10
17秒前
17秒前
桐桐应助根深者叶茂采纳,获得10
17秒前
ballball233发布了新的文献求助10
18秒前
NexusExplorer应助科研通管家采纳,获得30
18秒前
kingwill发布了新的文献求助30
18秒前
克劳修斯发布了新的文献求助10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114705
求助须知:如何正确求助?哪些是违规求助? 4321984
关于积分的说明 13467476
捐赠科研通 4153626
什么是DOI,文献DOI怎么找? 2275948
邀请新用户注册赠送积分活动 1277982
关于科研通互助平台的介绍 1215920