清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

ManifoldNet: A Deep Neural Network for Manifold-Valued Data With Applications

歧管(流体力学) 欧几里得空间 统计流形 计算机科学 数学 人工神经网络 黎曼流形 深度学习 人工智能 纯数学 域代数上的 信息几何学 曲率 几何学 工程类 机械工程 标量曲率
作者
Rudrasis Chakraborty,Jose Bouza,Jonathan H. Manton,Baba C. Vemuri
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:44 (2): 799-810 被引量:56
标识
DOI:10.1109/tpami.2020.3003846
摘要

Geometric deep learning is a relatively nascent field that has attracted significant attention in the past few years. This is partly due to the availability of data acquired from non-euclidean domains or features extracted from euclidean-space data that reside on smooth manifolds. For instance, pose data commonly encountered in computer vision reside in Lie groups, while covariance matrices that are ubiquitous in many fields and diffusion tensors encountered in medical imaging domain reside on the manifold of symmetric positive definite matrices. Much of this data is naturally represented as a grid of manifold-valued data. In this paper we present a novel theoretical framework for developing deep neural networks to cope with these grids of manifold-valued data inputs. We also present a novel architecture to realize this theory and call it the ManifoldNet. Analogous to vector spaces where convolutions are equivalent to computing weighted sums, manifold-valued data 'convolutions' can be defined using the weighted Fréchet Mean ([Formula: see text]). (This requires endowing the manifold with a Riemannian structure if it did not already come with one.) The hidden layers of ManifoldNet compute [Formula: see text]s of their inputs, where the weights are to be learnt. This means the data remain manifold-valued as they propagate through the hidden layers. To reduce computational complexity, we present a provably convergent recursive algorithm for computing the [Formula: see text]. Further, we prove that on non-constant sectional curvature manifolds, each [Formula: see text] layer is a contraction mapping and provide constructive evidence for its non-collapsibility when stacked in layers. This captures the two fundamental properties of deep network layers. Analogous to the equivariance of convolution in euclidean space to translations, we prove that the [Formula: see text] is equivariant to the action of the group of isometries admitted by the Riemannian manifold on which the data reside. To showcase the performance of ManifoldNet, we present several experiments using both computer vision and medical imaging data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田田完成签到 ,获得积分10
8秒前
MchemG应助科研通管家采纳,获得10
41秒前
小强完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
菁菁业业发布了新的文献求助10
1分钟前
1分钟前
菁菁业业完成签到,获得积分10
2分钟前
xiaosui完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
ccc发布了新的文献求助10
2分钟前
zcbb完成签到,获得积分10
2分钟前
Huong完成签到,获得积分10
2分钟前
幽默的太阳完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
郭斌艳发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
李健的小迷弟应助Dou采纳,获得10
4分钟前
Regina完成签到 ,获得积分10
4分钟前
5分钟前
科研通AI40应助爱笑雅山采纳,获得10
5分钟前
5分钟前
5分钟前
fantw完成签到,获得积分10
5分钟前
tangzhidi发布了新的文献求助10
5分钟前
爱笑雅山发布了新的文献求助10
5分钟前
David完成签到,获得积分10
6分钟前
爱笑雅山完成签到,获得积分10
6分钟前
耳朵儿歌完成签到 ,获得积分10
6分钟前
旺大财完成签到 ,获得积分10
7分钟前
David发布了新的文献求助10
7分钟前
研友_nxw2xL完成签到,获得积分10
8分钟前
zyj完成签到,获得积分10
8分钟前
muriel完成签到,获得积分10
8分钟前
8分钟前
9分钟前
忘忧Aquarius完成签到,获得积分10
9分钟前
z123123完成签到,获得积分10
9分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471471
求助须知:如何正确求助?哪些是违规求助? 3064520
关于积分的说明 9088325
捐赠科研通 2755155
什么是DOI,文献DOI怎么找? 1511863
邀请新用户注册赠送积分活动 698589
科研通“疑难数据库(出版商)”最低求助积分说明 698473