ManifoldNet: A Deep Neural Network for Manifold-Valued Data With Applications

歧管(流体力学) 欧几里得空间 统计流形 计算机科学 数学 人工神经网络 黎曼流形 深度学习 人工智能 纯数学 域代数上的 信息几何学 曲率 几何学 机械工程 标量曲率 工程类
作者
Rudrasis Chakraborty,Jose Bouza,Jonathan H. Manton,Baba C. Vemuri
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:44 (2): 799-810 被引量:57
标识
DOI:10.1109/tpami.2020.3003846
摘要

Geometric deep learning is a relatively nascent field that has attracted significant attention in the past few years. This is partly due to the availability of data acquired from non-euclidean domains or features extracted from euclidean-space data that reside on smooth manifolds. For instance, pose data commonly encountered in computer vision reside in Lie groups, while covariance matrices that are ubiquitous in many fields and diffusion tensors encountered in medical imaging domain reside on the manifold of symmetric positive definite matrices. Much of this data is naturally represented as a grid of manifold-valued data. In this paper we present a novel theoretical framework for developing deep neural networks to cope with these grids of manifold-valued data inputs. We also present a novel architecture to realize this theory and call it the ManifoldNet. Analogous to vector spaces where convolutions are equivalent to computing weighted sums, manifold-valued data 'convolutions' can be defined using the weighted Fréchet Mean ([Formula: see text]). (This requires endowing the manifold with a Riemannian structure if it did not already come with one.) The hidden layers of ManifoldNet compute [Formula: see text]s of their inputs, where the weights are to be learnt. This means the data remain manifold-valued as they propagate through the hidden layers. To reduce computational complexity, we present a provably convergent recursive algorithm for computing the [Formula: see text]. Further, we prove that on non-constant sectional curvature manifolds, each [Formula: see text] layer is a contraction mapping and provide constructive evidence for its non-collapsibility when stacked in layers. This captures the two fundamental properties of deep network layers. Analogous to the equivariance of convolution in euclidean space to translations, we prove that the [Formula: see text] is equivariant to the action of the group of isometries admitted by the Riemannian manifold on which the data reside. To showcase the performance of ManifoldNet, we present several experiments using both computer vision and medical imaging data sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谷明洋发布了新的文献求助10
1秒前
烟花应助贪玩的秋柔采纳,获得10
2秒前
3秒前
3秒前
情怀应助wen采纳,获得10
4秒前
RNNNLL发布了新的文献求助10
4秒前
4秒前
情怀应助仁爱的可乐采纳,获得10
5秒前
5秒前
6秒前
张安安完成签到,获得积分10
6秒前
帅气善斓应助ceeray23采纳,获得20
7秒前
少年游发布了新的文献求助10
9秒前
9秒前
活泼巧曼发布了新的文献求助10
10秒前
10秒前
ALITTLE完成签到,获得积分10
11秒前
xinghui发布了新的文献求助10
11秒前
wsx完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
英俊的铭应助tong采纳,获得10
15秒前
zzzrx完成签到,获得积分10
15秒前
科目三应助夏夏夏采纳,获得10
15秒前
15秒前
Lucas应助少年游采纳,获得10
15秒前
元妹妹完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
Orange应助KDS采纳,获得10
17秒前
板凳发布了新的文献求助50
17秒前
17秒前
zzzrx发布了新的文献求助10
17秒前
英姑应助lllhk采纳,获得10
17秒前
简单发布了新的文献求助30
17秒前
狂野萤完成签到,获得积分0
18秒前
ALKUT发布了新的文献求助10
19秒前
小二郎应助LIM采纳,获得10
19秒前
李健应助ceeray23采纳,获得20
19秒前
杨阳发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599307
求助须知:如何正确求助?哪些是违规求助? 4684893
关于积分的说明 14836988
捐赠科研通 4667699
什么是DOI,文献DOI怎么找? 2537887
邀请新用户注册赠送积分活动 1505378
关于科研通互助平台的介绍 1470783