已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ManifoldNet: A Deep Neural Network for Manifold-Valued Data With Applications

歧管(流体力学) 欧几里得空间 统计流形 计算机科学 数学 人工神经网络 黎曼流形 深度学习 人工智能 纯数学 域代数上的 信息几何学 曲率 几何学 工程类 机械工程 标量曲率
作者
Rudrasis Chakraborty,Jose Bouza,Jonathan H. Manton,Baba C. Vemuri
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:44 (2): 799-810 被引量:57
标识
DOI:10.1109/tpami.2020.3003846
摘要

Geometric deep learning is a relatively nascent field that has attracted significant attention in the past few years. This is partly due to the availability of data acquired from non-euclidean domains or features extracted from euclidean-space data that reside on smooth manifolds. For instance, pose data commonly encountered in computer vision reside in Lie groups, while covariance matrices that are ubiquitous in many fields and diffusion tensors encountered in medical imaging domain reside on the manifold of symmetric positive definite matrices. Much of this data is naturally represented as a grid of manifold-valued data. In this paper we present a novel theoretical framework for developing deep neural networks to cope with these grids of manifold-valued data inputs. We also present a novel architecture to realize this theory and call it the ManifoldNet. Analogous to vector spaces where convolutions are equivalent to computing weighted sums, manifold-valued data 'convolutions' can be defined using the weighted Fréchet Mean ([Formula: see text]). (This requires endowing the manifold with a Riemannian structure if it did not already come with one.) The hidden layers of ManifoldNet compute [Formula: see text]s of their inputs, where the weights are to be learnt. This means the data remain manifold-valued as they propagate through the hidden layers. To reduce computational complexity, we present a provably convergent recursive algorithm for computing the [Formula: see text]. Further, we prove that on non-constant sectional curvature manifolds, each [Formula: see text] layer is a contraction mapping and provide constructive evidence for its non-collapsibility when stacked in layers. This captures the two fundamental properties of deep network layers. Analogous to the equivariance of convolution in euclidean space to translations, we prove that the [Formula: see text] is equivariant to the action of the group of isometries admitted by the Riemannian manifold on which the data reside. To showcase the performance of ManifoldNet, we present several experiments using both computer vision and medical imaging data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
给好评发布了新的文献求助20
刚刚
Dyying发布了新的文献求助50
1秒前
3秒前
西瓜完成签到 ,获得积分10
3秒前
无私的含海完成签到,获得积分10
4秒前
6秒前
天天快乐应助威武的凡双采纳,获得10
7秒前
9秒前
博修发布了新的文献求助10
10秒前
蜀黍完成签到 ,获得积分10
10秒前
六初完成签到 ,获得积分10
10秒前
导师老八发布了新的文献求助10
10秒前
火星上紫山完成签到 ,获得积分10
11秒前
12秒前
ak发布了新的文献求助10
13秒前
14秒前
墨尘发布了新的文献求助30
15秒前
hwen1998完成签到 ,获得积分10
17秒前
华仔应助动生电动势采纳,获得30
18秒前
hanzhua132发布了新的文献求助10
19秒前
20秒前
66289完成签到 ,获得积分10
20秒前
24秒前
宝玉发布了新的文献求助10
25秒前
ning发布了新的文献求助10
31秒前
taozi完成签到,获得积分20
31秒前
33秒前
Zhengzhang完成签到 ,获得积分10
35秒前
顾矜应助科研通管家采纳,获得10
36秒前
英姑应助科研通管家采纳,获得10
37秒前
37秒前
华仔应助科研通管家采纳,获得10
37秒前
yx_cheng应助科研通管家采纳,获得10
37秒前
搜集达人应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
脑洞疼应助科研通管家采纳,获得10
37秒前
舒伯特完成签到 ,获得积分10
38秒前
42秒前
43秒前
薄荷梨发布了新的文献求助10
44秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963003
求助须知:如何正确求助?哪些是违规求助? 3508926
关于积分的说明 11144142
捐赠科研通 3241877
什么是DOI,文献DOI怎么找? 1791703
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803603