亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ManifoldNet: A Deep Neural Network for Manifold-Valued Data With Applications

歧管(流体力学) 欧几里得空间 统计流形 计算机科学 数学 人工神经网络 黎曼流形 深度学习 人工智能 纯数学 域代数上的 信息几何学 曲率 几何学 机械工程 标量曲率 工程类
作者
Rudrasis Chakraborty,Jose Bouza,Jonathan H. Manton,Baba C. Vemuri
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:44 (2): 799-810 被引量:57
标识
DOI:10.1109/tpami.2020.3003846
摘要

Geometric deep learning is a relatively nascent field that has attracted significant attention in the past few years. This is partly due to the availability of data acquired from non-euclidean domains or features extracted from euclidean-space data that reside on smooth manifolds. For instance, pose data commonly encountered in computer vision reside in Lie groups, while covariance matrices that are ubiquitous in many fields and diffusion tensors encountered in medical imaging domain reside on the manifold of symmetric positive definite matrices. Much of this data is naturally represented as a grid of manifold-valued data. In this paper we present a novel theoretical framework for developing deep neural networks to cope with these grids of manifold-valued data inputs. We also present a novel architecture to realize this theory and call it the ManifoldNet. Analogous to vector spaces where convolutions are equivalent to computing weighted sums, manifold-valued data 'convolutions' can be defined using the weighted Fréchet Mean ([Formula: see text]). (This requires endowing the manifold with a Riemannian structure if it did not already come with one.) The hidden layers of ManifoldNet compute [Formula: see text]s of their inputs, where the weights are to be learnt. This means the data remain manifold-valued as they propagate through the hidden layers. To reduce computational complexity, we present a provably convergent recursive algorithm for computing the [Formula: see text]. Further, we prove that on non-constant sectional curvature manifolds, each [Formula: see text] layer is a contraction mapping and provide constructive evidence for its non-collapsibility when stacked in layers. This captures the two fundamental properties of deep network layers. Analogous to the equivariance of convolution in euclidean space to translations, we prove that the [Formula: see text] is equivariant to the action of the group of isometries admitted by the Riemannian manifold on which the data reside. To showcase the performance of ManifoldNet, we present several experiments using both computer vision and medical imaging data sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
5秒前
多乐多发布了新的文献求助10
7秒前
OSASACB完成签到 ,获得积分10
8秒前
9秒前
英姑应助多乐多采纳,获得10
18秒前
20秒前
47秒前
53秒前
SUNny发布了新的文献求助10
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
juan发布了新的文献求助10
1分钟前
juan完成签到,获得积分10
1分钟前
美满的小蘑菇完成签到 ,获得积分10
1分钟前
可爱的函函应助Huck采纳,获得10
2分钟前
2分钟前
2分钟前
Huck发布了新的文献求助10
2分钟前
斯文渊思发布了新的文献求助10
2分钟前
2分钟前
遥感小虫发布了新的文献求助10
2分钟前
斯文渊思完成签到,获得积分10
2分钟前
遥感小虫发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
顾矜应助科研通管家采纳,获得10
4分钟前
NattyPoe应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664501
求助须知:如何正确求助?哪些是违规求助? 4863056
关于积分的说明 15107857
捐赠科研通 4823130
什么是DOI,文献DOI怎么找? 2581958
邀请新用户注册赠送积分活动 1536065
关于科研通互助平台的介绍 1494491