明胶
自愈水凝胶
挤压
材料科学
流变学
3D打印
动态力学分析
扫描电子显微镜
化学工程
复合材料
多孔性
剪切减薄
水活度
含水量
聚合物
化学
高分子化学
有机化学
工程类
岩土工程
作者
Chih-Chun Kuo,Hantang Qin,Yiliang Cheng,Xuepeng Jiang,Xiaolei Shi
标识
DOI:10.1016/j.foodhyd.2020.106262
摘要
The extrusion-based 3D printing system was used to fabricate the bioscaffold with hybrid hydrogels of gelatin and alginate (G/A), with different total solid concentrations (3%, 5%, and 7%) and G/A ratios (1:2, 1:1, and 2:1). Rheological properties were related to the 3D printability and shape retention capacity of the hybrid hydrogels. For extrusion-based 3D printing using the current platform, the materials that were considered 3D printable showed shear-thinning flow behavior. Also, the printable materials demonstrated a storage modulus (Gʹ) higher than the loss modulus (Gʹʹ), with a loss factor (tan δ = Gʹʹ/Gʹ) in the range of 0.48–0.58 during the frequency sweep of 15–40 rad/s, which is the corresponding frequency that can be related to our 3D printing settings. Texture profile analysis indicated that among the optimal formulas for 3D printing, the bioscaffold fabricated with the hybrid gels of 7% 1:2 G/A had the highest hardness and adhesiveness. After freeze-drying, the hardness increased significantly (p < 0.05). The 3D printed bioscaffold was also freeze-dried to extend the shelf life and enhance the mechanical properties of the fabricated structure, moisture content, and water activity reduced significantly after freeze-drying. The scanning electron microscopy (SEM) results demonstrated that the 3D printed scaffolds had porous structures, which has the potential to encapsulate and deliver other bioactive compounds, such as enzymes, vitamins, antioxidants, and probiotics.
科研通智能强力驱动
Strongly Powered by AbleSci AI