An integrated manufacturing strategy to fabricate delivery system using gelatin/alginate hybrid hydrogels: 3D printing and freeze-drying

明胶 自愈水凝胶 挤压 材料科学 流变学 3D打印 动态力学分析 扫描电子显微镜 化学工程 复合材料 多孔性 剪切减薄 水活度 含水量 聚合物 化学 高分子化学 有机化学 工程类 岩土工程
作者
Chih-Chun Kuo,Hantang Qin,Yiliang Cheng,Xuepeng Jiang,Xiaolei Shi
出处
期刊:Food Hydrocolloids [Elsevier]
卷期号:111: 106262-106262 被引量:84
标识
DOI:10.1016/j.foodhyd.2020.106262
摘要

The extrusion-based 3D printing system was used to fabricate the bioscaffold with hybrid hydrogels of gelatin and alginate (G/A), with different total solid concentrations (3%, 5%, and 7%) and G/A ratios (1:2, 1:1, and 2:1). Rheological properties were related to the 3D printability and shape retention capacity of the hybrid hydrogels. For extrusion-based 3D printing using the current platform, the materials that were considered 3D printable showed shear-thinning flow behavior. Also, the printable materials demonstrated a storage modulus (Gʹ) higher than the loss modulus (Gʹʹ), with a loss factor (tan δ = Gʹʹ/Gʹ) in the range of 0.48–0.58 during the frequency sweep of 15–40 rad/s, which is the corresponding frequency that can be related to our 3D printing settings. Texture profile analysis indicated that among the optimal formulas for 3D printing, the bioscaffold fabricated with the hybrid gels of 7% 1:2 G/A had the highest hardness and adhesiveness. After freeze-drying, the hardness increased significantly (p < 0.05). The 3D printed bioscaffold was also freeze-dried to extend the shelf life and enhance the mechanical properties of the fabricated structure, moisture content, and water activity reduced significantly after freeze-drying. The scanning electron microscopy (SEM) results demonstrated that the 3D printed scaffolds had porous structures, which has the potential to encapsulate and deliver other bioactive compounds, such as enzymes, vitamins, antioxidants, and probiotics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助虚幻绮露采纳,获得10
1秒前
hyf发布了新的文献求助10
2秒前
酷酷冷亦发布了新的文献求助10
2秒前
3秒前
Cora发布了新的文献求助30
3秒前
斯文败类应助松松松采纳,获得30
4秒前
好苦完成签到,获得积分10
5秒前
Akim应助栗子采纳,获得10
5秒前
李爱国应助Coconut采纳,获得30
7秒前
7秒前
丘比特应助victor采纳,获得10
8秒前
hyf完成签到,获得积分10
8秒前
愉快草莓发布了新的文献求助10
9秒前
10秒前
11秒前
科研通AI5应助小七采纳,获得10
13秒前
PUPUPUPUPU发布了新的文献求助10
13秒前
斯文败类应助柠檬薄荷采纳,获得10
14秒前
14秒前
14秒前
gghoubj发布了新的文献求助10
15秒前
16秒前
搜集达人应助Sasuke采纳,获得10
18秒前
咸鱼lmye发布了新的文献求助10
18秒前
19秒前
20秒前
联合国ffc发布了新的文献求助10
20秒前
研友_La17wL完成签到,获得积分10
20秒前
麗会水逆退散完成签到,获得积分10
20秒前
独特凌柏完成签到,获得积分20
20秒前
从容的夏瑶完成签到,获得积分10
21秒前
22秒前
独特凌柏发布了新的文献求助10
24秒前
24秒前
自信乐菱发布了新的文献求助10
25秒前
科研通AI5应助xlz采纳,获得10
25秒前
Chen发布了新的文献求助10
26秒前
闲云野鹤应助林钟九采纳,获得10
28秒前
28秒前
cdu应助科研小白LR采纳,获得10
28秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483773
求助须知:如何正确求助?哪些是违规求助? 3073002
关于积分的说明 9128881
捐赠科研通 2764596
什么是DOI,文献DOI怎么找? 1517290
邀请新用户注册赠送积分活动 701998
科研通“疑难数据库(出版商)”最低求助积分说明 700849