Rapid Identification by Surface-Enhanced Raman Spectroscopy of Cancer Cells at Low Concentrations Flowing in a Microfluidic Channel

微流控 拉曼光谱 表面增强拉曼光谱 条形码 生物分子 纳米技术 材料科学 分析化学(期刊) 癌细胞 拉曼散射 生物物理学 化学 癌症 色谱法 计算机科学 光学 生物 物理 操作系统 遗传学
作者
Alessia Pallaoro,Mehran R. Hoonejani,Gary B. Braun,Carl Meinhart,Martin Moskovits
出处
期刊:ACS Nano [American Chemical Society]
卷期号:9 (4): 4328-4336 被引量:189
标识
DOI:10.1021/acsnano.5b00750
摘要

Reliable identification and collection of cells from bodily fluids is of growing interest for monitoring patient response to therapy and for early detection of disease or its recurrence. We describe a detection platform that combines microfluidics with surface-enhanced Raman spectroscopy (SERS) for the identification of individual mammalian cells continuously flowing in a microfluidics channel. A mixture of cancerous and noncancerous prostate cells was incubated with SERS biotags (SBTs) developed and synthesized by us, then injected into a flow-focused microfluidic channel, which forces the cells into a single file. The spectrally rich SBTs are based on a silver nanoparticle dimer core labeled with a Raman-active small reporter molecule paired with an affinity biomolecule, providing a unique barcode whose presence in a composite SERS spectrum can be deconvoluted. Individual cancer cells passing through the focused laser beam were correctly identified among a proportionally larger number of other cells by their Raman signatures. We examine two deconvolution strategies: principal component analysis and classical least-squares. The deconvolution strategies are used to unmix the overall spectrum to determine the relative contributions between two SBT barcodes, where one SBT barcode indicates neuropilin-1 overexpression, while a second SBT barcode is more universal and indicates unspecific binding to a cell's membrane. Highly reliable results were obtained for all of the cell mixture ratios tested, the lowest being 1 in 100 cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
roy发布了新的文献求助10
1秒前
2秒前
bb完成签到,获得积分10
2秒前
小蘑菇应助Yitianqi采纳,获得10
2秒前
gww发布了新的文献求助10
2秒前
zxx发布了新的文献求助10
3秒前
3秒前
小蘑菇应助pups采纳,获得10
3秒前
ZeSheng完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
6秒前
YuanFeng发布了新的文献求助10
7秒前
Forever完成签到,获得积分10
7秒前
9秒前
zhao发布了新的文献求助10
9秒前
10秒前
刘淼完成签到,获得积分10
10秒前
10秒前
10秒前
深情安青应助巍峨采纳,获得10
10秒前
科研小柠檬完成签到,获得积分10
10秒前
当代完成签到 ,获得积分10
11秒前
11秒前
11秒前
wwf发布了新的文献求助10
12秒前
dl应助大方元风采纳,获得10
12秒前
JEEH发布了新的文献求助10
13秒前
13秒前
星期八发布了新的文献求助10
13秒前
14秒前
14秒前
1233330发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
哈尼发布了新的文献求助10
15秒前
nature发布了新的文献求助10
16秒前
LioraLi发布了新的文献求助10
16秒前
大胆的以冬完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709417
求助须知:如何正确求助?哪些是违规求助? 5194819
关于积分的说明 15256984
捐赠科研通 4862196
什么是DOI,文献DOI怎么找? 2609928
邀请新用户注册赠送积分活动 1560336
关于科研通互助平台的介绍 1518058