腈水合酶
格罗斯
格罗尔
丙烯酰胺
大肠杆菌
生物化学
化学
分子生物学
生物
基因
酶
有机化学
单体
聚合物
作者
Yuxuan Tian,Jie Chen,Hui-Min Yu,Zhongyao Shen
出处
期刊:Journal of Microbiology and Biotechnology
[Journal of Microbiology and Biotechnology]
日期:2016-02-28
卷期号:26 (2): 337-346
被引量:26
标识
DOI:10.4014/jmb.1509.09084
摘要
Three combinations of molecular chaperones from Escherichia coli (i.e., DnaK-DnaJ-GrpEGroEL- GroES, GroEL-GroES, and DnaK-DnaJ-GrpE) were overproduced in E. coli BL21, and their in vitro stabilizing effects on a nitrile hydratase (NHase) were assessed. The optimal gene combination, E. coli groEL-groES (ecgroEL-ES), was introduced into Rhodococcus ruber TH3. A novel engineered strain, R. ruber TH3G was constructed with the native NHase gene on its chromosome and the heterologous ecgroEL-ES genes in a shuttle plasmid. In R. ruber TH3G, NHase activity was enhanced 37.3% compared with the control, TH3. The in vivo stabilizing effect of ecGroEL-ES on the NHase was assessed using both acrylamide immersion and heat shock experiments. The inactivation behavior of the in vivo NHase after immersion in a solution of dynamically increased concentrations of acrylamide was particularly evident. When the acrylamide concentration was increased to 500 g/l (50%), the remaining NHase activity in TH3G was 38%, but in TH3, activity was reduced to 10%. Reactivation of the in vivo NHases after varying degrees of inactivation was further assessed. The activity of the reactivated NHase was more than 2-fold greater in TH3G than in TH3. The hydration synthesis of acrylamide catalyzed by the in vivo NHase was performed with continuous acrylonitrile feeding. The final concentration of acrylamide was 640 g/l when catalyzed by TH3G, compared with 490 g/l acrylamide by TH3. This study is the first to show that the chaperones ecGroEL-ES work well in Rhodococcus and simultaneously possess protein-folding assistance functions and the ability to stabilize and reactivate the native NHases.
科研通智能强力驱动
Strongly Powered by AbleSci AI