亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A General Buffer Zone-type Non-Reflecting Boundary Condition for Computational Aeroacoustics

计算空气声学 空气声学 缓冲器(光纤) 边界(拓扑) 类型(生物学) 计算机科学 声学 物理 数学分析 数学 地质学 电信 声压 古生物学
作者
Nathan B. Edgar,Miguel R. Visbal
标识
DOI:10.2514/6.2003-3300
摘要

A non-reflecting buffer zone-type boundary condition based on grid stretching and attenuation methods is presented for computational aeroacoustics. Energy of outgoing wave content is aggressively transferred into increasingly higher wavenumber modes via grid stretching and this high wavenumber (frequency) content is annihilated using a high-order, implicit low-pass filter. The linearized Euler equations in strong conservative form are recast using a general curvilinear coordinate transformation. Spatial discretization is achieved using a sixth-order compact difference operator and the solution is timemarched with a fourth-order Runge-Kutta integration technique. Numerical examples with uniform mean flow are presented for a periodic acoustic source, convection of a vortical disturbance, and a wallbounded acoustic disturbance. The numerical solutions match analytic, reference, and published data very well, and demonstrate the effectiveness of this non-reflecting boundary treatment for computational aeroacoustics. INTRODUCTION The equations describing the propagation of acoustic signals, the linearized Euler equations, require numerical methods that are essentially free of dispersion and dissipation. Therefore, high-order spatial discretization schemes and temporal integration techniques that have minimal affect on the resolution characteristics of the spatial scheme are required for accurate simulation. The lack of a viscous (damping) effect in the describing equations means that any spurious errors generated due to numerical boundary treatment may propagate freely, corrupting the acoustic field. Assistant Professor, Member AIAA Technical Area Leader, Associate Fellow AIAA The need for highly accurate non-reflecting boundary conditions to truncate the domain of interest for computational aeroacoustics (CAA) is well established. A variety of techniques have been proposed, and can be grouped as: (a) asymptotic approximations, (b) characteristics-based techniques, (c) Perfectly Matched Layers (PML), (d) absorbing layers, and (e) hybrid approaches. In this paper, a non-reflecting boundary condition utilizing grid stretching and various attenuation methods is considered. The non-reflecting property is obtained by an energy transfer of wave content into increasingly higher order wavenumber (spatial frequency) modes, and then annihilating this high frequency content by filtering or damping. This energy transfer and annihilation (ETA) boundary condition is used for both outflow and radiation boundaries for acoustic and vortical disturbances. Variations of this method have been considered by Colonius, et.al. and Bogey, et.al. as an outflow boundary condition. The present study is a continuation of earlier work by Visbal and Gaitonde for computational acoustics. The focus of this work is to establish the effectiveness of the ETA boundary conditions as a general non-reflecting boundary treatment for problems that arise in computational acoustics. In the next section, the specific form of the equations describing propagation of acoustic signals is presented. The numerical methodology and application specifics of the ETA boundary conditions are discussed next, followed by a series of numerical examples that are used to evaluate the effectiveness of the proposed treatment. These include a periodic source in a uniform mean flow, convection of a vortical disturbance, and the propagation of a wallbounded acoustic disturbance subjected to a uniform mean flow. 9th AIAA/CEAS Aeroacoustics Conference and Exhibit 12-14 May 2003, Hilton Head, South Carolina AIAA 2003-3300 Copyright © 2003 by the American Institute of Aeronautics and Astronautics, Inc. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner. 2 American Institute of Aeronautics and Astronautics DESCRIBING EQUATIONS The Euler equations, linearized about a uniform mean flow, are used to describe the propagation of small amplitude acoustic signals and vortical disturbances. A generalized curvilinear coordinate transformation is used to map the physical Cartesian system (x,y) into a uniform computational space (ξ,η). The two-dimensional form of the equations in computational space can be written as: S F E U = η ∂ ∂ + ξ ∂ ∂ + ∂ ∂

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助sun采纳,获得10
19秒前
22秒前
25秒前
cqbrain123完成签到,获得积分10
28秒前
sun发布了新的文献求助10
30秒前
噜啦啦完成签到 ,获得积分10
38秒前
tonghau895完成签到 ,获得积分10
45秒前
殷勤的涵梅完成签到 ,获得积分10
51秒前
1分钟前
传奇3应助sun采纳,获得10
1分钟前
1分钟前
1分钟前
Boren发布了新的文献求助10
1分钟前
sun发布了新的文献求助10
1分钟前
Mtx3098520564完成签到 ,获得积分10
1分钟前
1分钟前
Yini完成签到,获得积分0
2分钟前
2分钟前
3分钟前
alilu发布了新的文献求助10
3分钟前
科研通AI6应助sun采纳,获得10
3分钟前
xiaoleihu完成签到 ,获得积分10
3分钟前
andrele发布了新的文献求助10
3分钟前
3分钟前
Lucas应助safari采纳,获得10
3分钟前
sun发布了新的文献求助10
4分钟前
mmmmm完成签到,获得积分10
4分钟前
4分钟前
RR发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助150
4分钟前
RR完成签到,获得积分10
4分钟前
Criminology34应助andrele采纳,获得10
4分钟前
CodeCraft应助Marco_hxkq采纳,获得10
5分钟前
吉安娜完成签到 ,获得积分10
5分钟前
天天快乐应助科研通管家采纳,获得10
5分钟前
GingerF应助科研通管家采纳,获得100
5分钟前
5分钟前
Marco_hxkq发布了新的文献求助10
5分钟前
5分钟前
正直的友容完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952327
求助须知:如何正确求助?哪些是违规求助? 4215067
关于积分的说明 13110992
捐赠科研通 3996934
什么是DOI,文献DOI怎么找? 2187720
邀请新用户注册赠送积分活动 1202971
关于科研通互助平台的介绍 1115712