数学
区间(图论)
非线性系统
插值(计算机图形学)
数学分析
边界(拓扑)
边值问题
传热
热方程
高斯伪谱法
Neumann边界条件
拉盖尔多项式
拉格朗日插值法
应用数学
傅里叶变换
多项式的
伪谱法
傅里叶分析
计算机科学
物理
热力学
计算机图形学(图像)
组合数学
量子力学
动画
出处
期刊:Communication on Applied Mathematics and Computation
日期:2013-01-01
被引量:3
摘要
This paper deals with the numerical solutions of the nonlinear heat transfer equation with inhomogeneous Neumann boundary conditions on a semiinfinite interval.Laguerre-Gauss-Radua nodes are used to construct the Nthdegree Lagrange interpolation function that approximates the solution to the nonlinear heat transfer equation on a semi-infinite interval.Efficient algorithms are implemented.Numerical results demonstrate efficiency and high accuracy of this approach.Especially,it is much easier to deal with the nonlinear heat transfer on a semi-infinite interval.The proposed method is also applicable to other nonUnear problems defined on certain unbounded domains.
科研通智能强力驱动
Strongly Powered by AbleSci AI