半导体
有机半导体
带隙
有机太阳能电池
数码产品
材料科学
电子结构
航程(航空)
X射线光电子能谱
库仑
电子能带结构
有机电子学
光电子学
工程物理
化学物理
化学
电压
凝聚态物理
计算化学
物理
电子
物理化学
聚合物
晶体管
复合材料
量子力学
核磁共振
作者
Martin Schwarze,Wolfgang Tress,Beatrice Beyer,Feng Gao,Reinhard Scholz,Carl Poelking,Katrin Ortstein,Alrun A. Günther,Daniel Kasemann,Denis Andrienko,Karl Leo
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2016-06-16
卷期号:352 (6292): 1446-1449
被引量:269
标识
DOI:10.1126/science.aaf0590
摘要
A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors.
科研通智能强力驱动
Strongly Powered by AbleSci AI