A microphysiological model of the human placental barrier

合胞滋养细胞 胎盘 滋养层 细胞生物学 胎儿 胎膜 生物 离体 势垒函数 化学 体外 生物化学 怀孕 遗传学
作者
Cassidy Blundell,Emily R. Tess,Ariana Schanzer,Christos Coutifaris,Emily Su,Samuel Parry,Dongeun Huh
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:16 (16): 3065-3073 被引量:209
标识
DOI:10.1039/c6lc00259e
摘要

During human pregnancy, the fetal circulation is separated from maternal blood in the placenta by two cell layers - the fetal capillary endothelium and placental trophoblast. This placental barrier plays an essential role in fetal development and health by tightly regulating the exchange of endogenous and exogenous materials between the mother and the fetus. Here we present a microengineered device that provides a novel platform to mimic the structural and functional complexity of this specialized tissue in vitro. Our model is created in a multilayered microfluidic system that enables co-culture of human trophoblast cells and human fetal endothelial cells in a physiologically relevant spatial arrangement to replicate the characteristic architecture of the human placental barrier. We have engineered this co-culture model to induce progressive fusion of trophoblast cells and to form a syncytialized epithelium that resembles the syncytiotrophoblast in vivo. Our system also allows the cultured trophoblasts to form dense microvilli under dynamic flow conditions and to reconstitute expression and physiological localization of membrane transport proteins, such as glucose transporters (GLUTs), critical to the barrier function of the placenta. To provide a proof-of-principle for using this microdevice to recapitulate native function of the placental barrier, we demonstrated physiological transport of glucose across the microengineered maternal-fetal interface. Importantly, the rate of maternal-to-fetal glucose transfer in this system closely approximated that measured in ex vivo perfused human placentas. Our "placenta-on-a-chip" platform represents an important advance in the development of new technologies to model and study the physiological complexity of the human placenta for a wide variety of applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助S月小小采纳,获得10
刚刚
明亮灭绝发布了新的文献求助10
1秒前
elmacho完成签到 ,获得积分10
3秒前
时深完成签到 ,获得积分10
5秒前
5秒前
科研人完成签到,获得积分10
5秒前
暴躁的惜筠完成签到,获得积分10
5秒前
GGZ完成签到,获得积分10
6秒前
Lucas应助西柚柠檬采纳,获得10
6秒前
念梦完成签到,获得积分10
6秒前
芝意CHEAE完成签到 ,获得积分10
7秒前
8秒前
潇洒的紫易完成签到,获得积分10
9秒前
9秒前
Yuri发布了新的文献求助10
9秒前
大方的契完成签到,获得积分10
10秒前
11秒前
明天见发布了新的文献求助10
12秒前
踏实语海完成签到,获得积分10
12秒前
yan123完成签到,获得积分10
12秒前
shin0324发布了新的文献求助10
13秒前
赘婿应助与一人同游采纳,获得10
13秒前
虚幻诗柳完成签到,获得积分10
16秒前
大方的契发布了新的文献求助10
18秒前
changping应助come采纳,获得100
18秒前
18秒前
luozejun完成签到,获得积分10
20秒前
酷波er应助李陈采纳,获得10
21秒前
Lucas应助宋贺贺采纳,获得10
22秒前
哈哈环完成签到 ,获得积分10
22秒前
22秒前
qnd关注了科研通微信公众号
22秒前
gqq完成签到,获得积分10
23秒前
ZJFL完成签到,获得积分10
24秒前
24秒前
25秒前
唯旧发布了新的文献求助10
25秒前
12345完成签到,获得积分10
25秒前
Yuri完成签到,获得积分10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305017
求助须知:如何正确求助?哪些是违规求助? 4451211
关于积分的说明 13851392
捐赠科研通 4338545
什么是DOI,文献DOI怎么找? 2381993
邀请新用户注册赠送积分活动 1377139
关于科研通互助平台的介绍 1344501