Magnetic mineral diagenesis

成岩作用 自生的 地质学 沉积岩 磁铁矿 地球化学 矿物 矿物学 化学 古生物学 有机化学
作者
Andrew P. Roberts
出处
期刊:Earth-Science Reviews [Elsevier BV]
卷期号:151: 1-47 被引量:361
标识
DOI:10.1016/j.earscirev.2015.09.010
摘要

Reduction–oxidation (redox) reactions occur during burial because sediments contain reactive mixtures of oxidised and reduced components. Diagenetic chemical reactions represent the approach of all sedimentary components toward equilibrium, and control the long-term stability of sedimentary iron-bearing minerals. Magnetic minerals are sensitive indicators of sedimentary redox conditions and of changes in these conditions through time, with diagenetic effects ranging from subtle to pervasive. Despite the importance of magnetic mineral diagenesis in paleomagnetism, rock magnetism, and environmental magnetism, and the usefulness of these subjects in the Earth and environmental sciences, there is no systematic single published treatment of magnetic mineral diagenesis. This paper is an attempt to provide such a treatment for the full range of diagenetic environments. Magnetic mineral diagenesis during early burial is driven largely by chemical changes associated with organic matter degradation in a succession of environments that range from oxic to nitrogenous to manganiferous to ferruginous to sulphidic to methanic, where the free energy yielded by different oxidants decreases progressively in each environment. In oxic environments, the most important diagenetic processes involve surface oxidation of detrital minerals, and precipitation of Fe3 +-bearing minerals from solution. In ferruginous environments, the most reactive detrital and authigenic iron oxides undergo dissolution, often mediated by dissimilatory iron-reducing bacteria, which releases Fe2 + that becomes available for other reactions. The Fe2 + in solution can diffuse upward where it is oxidised to form new authigenic iron (oxyhydr-)oxide minerals or it can become bioavailable to enable magnetotactic bacteria to biomineralise magnetite, generally at the base of the overlying nitrogenous zone. Alternatively, dissimilatory iron-reducing bacteria can produce extracellular magnetite within ferruginous environments. In sulphidic environments, iron-bearing detrital mineral assemblages undergo more radical alteration. Hydrogen sulphide, which is a byproduct of bacterial sulphate reduction or of anaerobic oxidation of methane, reacts with the Fe2 + released from iron mineral dissolution or directly with solid iron (oxyhydr-)oxide minerals to form iron sulphide minerals (mackinawite, greigite, and pyrite). Authigenic growth of ferrimagnetic greigite has important implications for paleomagnetic recording. Secondary iron sulphide formation can also occur as a result of anaerobic oxidation of methane. Methane migration through sediments in association with biogenic or thermogenic methane production or in association with gas hydrate dissociation can disrupt the diagenetic steady state and give rise to greigite and monoclinic pyrrhotite formation that remagnetises sediments. Most of the above-described diagenetic processes occur below 50 °C. With continuing burial above 50 °C, but at sub-metamorphic temperatures, magnetic minerals can undergo further thermally-induced chemical changes that give rise to a wide range of mineralogical transformations that affect the magnetic record of the host sediment. These changes include remagnetisations. Magnetic analysis can provide much valuable information concerning diagenesis in environmental processes. The range of processes discussed in this paper should assist researchers in analysing sediment magnetic properties for which the assessment of diagenetic effects has become a necessary component.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助TL采纳,获得10
刚刚
刚刚
1秒前
???完成签到,获得积分10
1秒前
木木酱发布了新的文献求助10
2秒前
2秒前
2秒前
gy79210发布了新的文献求助10
2秒前
pporange完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
子车茗应助廿叁采纳,获得20
5秒前
5秒前
雨晴发布了新的文献求助10
5秒前
5秒前
Owen应助kiska采纳,获得10
5秒前
5秒前
minminzi应助leo_twli采纳,获得10
6秒前
科研通AI5应助new采纳,获得10
6秒前
健忘捕发布了新的文献求助10
6秒前
Huangyifang发布了新的文献求助10
6秒前
6秒前
111iii完成签到,获得积分10
7秒前
7秒前
Enns发布了新的文献求助10
7秒前
Herbs发布了新的文献求助10
7秒前
激动的尔烟完成签到,获得积分10
7秒前
8秒前
甜馨发布了新的文献求助10
8秒前
8秒前
8秒前
yxf完成签到,获得积分10
9秒前
9秒前
TL发布了新的文献求助10
9秒前
benyu完成签到,获得积分10
9秒前
minminzi应助leslie采纳,获得10
10秒前
DamenS发布了新的文献求助10
10秒前
zhanglongquan完成签到,获得积分20
10秒前
pporange发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905490
求助须知:如何正确求助?哪些是违规求助? 4183360
关于积分的说明 12990057
捐赠科研通 3949603
什么是DOI,文献DOI怎么找? 2166023
邀请新用户注册赠送积分活动 1184504
关于科研通互助平台的介绍 1090823