线粒体分裂
第一季
细胞生物学
DNM1L型
线粒体
裂变
线粒体融合
线粒体凋亡诱导通道
细胞凋亡
生物
化学
线粒体内膜
线粒体DNA
生物化学
物理
核物理学
基因
中子
作者
Zhenzhen Zhang,Lei Liu,Shengnan Wu,Da Xing
摘要
Mitochondrial fission and proteins vital to this process play essential roles in apoptosis. Several mitochondrial outer membrane proteins, including mitochondrial fission protein 1 (Fis1), mitochondrial fission factor (Mff) and mitochondrial dynamics of 51 kDa protein (MiD51), also known as mitochondrial elongation factor 1 (MEIF1), have been reported to promote mitochondrial fission by recruiting the GTPase dynamin-related protein 1 (Drp1). However, it remains unclear how these fission factors coordinate to control apoptotic mitochondrial fission. Molecular studies have suggested the existence of interaction between Mff and Drp1, but fundamental questions remain concerning their function. In the present study, we reported that the phosphorylation status of Drp1-Ser(637) was essential for its interaction with Mff. UV stimulation induced a decrease in cytoplasmic and mitochondrial Drp1 phosphorylation on Ser(637) and enhanced the interaction between Drp1 and Mff, resulting in mitochondrial fragmentation. Simultaneously, the interaction increased markedly between Fis1 and MiD51/MIEF1, whereas the interaction between Drp1 and MiD51/MIEF1 decreased significantly after UV irradiation, which suggests that Fis1 competitively binds to MiD51/MIEF1 to activate Drp1 indirectly. Moreover, Mff-Drp1 binding and Mff-mediated recruitment of Drp1 to mitochondria did not require Bax during UV stimulation. Our study revealed a novel role of Mff in regulation of mitochondrial fission and showed how the fission proteins are orchestrated to mediate the fission process during apoptosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI