代谢型谷氨酸受体
星形胶质增生
代谢型谷氨酸受体2
谷氨酸受体
代谢型谷氨酸受体6
代谢型谷氨酸受体5
代谢型谷氨酸受体1
星形胶质细胞
生物
利鲁唑
肌萎缩侧索硬化
神经科学
细胞生物学
化学
作者
Johanna Anneser,Christine Chahli,Paul G. Ince,Gian Domenico Borasio,Christopher Shaw
标识
DOI:10.1093/jnen/63.8.831
摘要
Accumulating evidence indicates that alterations in glial activation and disturbances in glial glutamate metabolism may contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS). Metabotropic glutamate receptors (mGluRs) are involved in glutamate homeostasis as well as in glial proliferation. Using in situ hybridization and immunohistochemistry we found a strong upregulation of group I and group II mGluR mRNA and protein in ALS spinal cord as compared to controls (mGluR5 > mGluR1 > mGluR2/3). In vitro, the mGluR group I agonist 3,5-dihydroxyphenylglycine induced proliferation in chick spinal cord astroglial cultures. Moreover, addition of cerebrospinal fluid (CSF) from ALS patients resulted in significantly higher proliferation rates than control CSF. In both cases, the effect could be blocked by addition of the mGluR group I antagonist 1-aminoindan-1,5-dicarboxylic acid. Taken together, our data suggest that stimulation of glial mGluRs through mediators present in the CSF may contribute to glial proliferation and astrogliosis in ALS.
科研通智能强力驱动
Strongly Powered by AbleSci AI