生物
肺炎链球菌
细菌粘附素
微生物学
免疫原性
抗体
抗原
肺炎球菌感染
人口
血清型
免疫球蛋白G
毒力
病毒学
免疫学
基因
遗传学
医学
抗生素
环境卫生
作者
Aoife M. Roche,Jeffrey N. Weiser
摘要
Much of the efficacy of current pneumococcal conjugate vaccines lies in their ability to decrease carriage of vaccine serotypes in the population. Novel and more-broadly acting vaccines would also need to target carriage in order to be as effective. We have previously shown that model murine carriage of Streptococcus pneumoniae can elicit antibody-dependent immunity and can protect against a virulent heterologous challenge strain. This study set out to identify S. pneumoniae surface antigens that may elicit cross-reactive antibodies following colonization. Western blot analysis using sera from colonized mice identified the previously characterized immunogens pneumococcal surface protein A (PspA), putative proteinase maturation protein A (PpmA), and pneumococcal surface adhesin A (PsaA) as such antigens. Using flow cytometry, PspA was found to be the major target of surface-bound cross-reactive IgG in sera from TIGR4 Delta cps-colonized mice, with a modest contribution from PpmA and none from PsaA. In human sera, however, only mutants lacking PpmA were shown to have reduced binding of surface IgG compared to wild-type strains, suggesting that prior exposure to S. pneumoniae in humans may induce PpmA antibodies. We also investigated if cross-reactive antibodies induced by these antigens may be cross-protective against carriage. Despite the immunogenicity of PspA, PpmA, and PsaA, mice were still protected following colonization with mutants lacking these antigens, suggesting they are not necessary for cross-protection induced by carriage. Our findings suggest that a whole-organism approach may be needed to broadly diminish carriage.
科研通智能强力驱动
Strongly Powered by AbleSci AI