微电子
原子层沉积
小型化
材料科学
等离子体
薄膜
纳米技术
沉积(地质)
等离子体处理
化学
计算机科学
物理
量子力学
古生物学
沉积物
生物
作者
Harald B. Profijt,Stephen E. Potts,M. C. M. van de Sanden,W. M. M. Kessels
出处
期刊:Journal of vacuum science & technology
[American Vacuum Society]
日期:2011-08-18
卷期号:29 (5)
被引量:763
摘要
Plasma-assisted atomic layer deposition (ALD) is an energy-enhanced method for the synthesis of ultra-thin films with Å-level resolution in which a plasma is employed during one step of the cyclic deposition process. The use of plasma species as reactants allows for more freedom in processing conditions and for a wider range of material properties compared with the conventional thermally-driven ALD method. Due to the continuous miniaturization in the microelectronics industry and the increasing relevance of ultra-thin films in many other applications, the deposition method has rapidly gained popularity in recent years, as is apparent from the increased number of articles published on the topic and plasma-assisted ALD reactors installed. To address the main differences between plasma-assisted ALD and thermal ALD, some basic aspects related to processing plasmas are presented in this review article. The plasma species and their role in the surface chemistry are addressed and different equipment configurations, including radical-enhanced ALD, direct plasma ALD, and remote plasma ALD, are described. The benefits and challenges provided by the use of a plasma step are presented and it is shown that the use of a plasma leads to a wider choice in material properties, substrate temperature, choice of precursors, and processing conditions, but that the processing can also be compromised by reduced film conformality and plasma damage. Finally, several reported emerging applications of plasma-assisted ALD are reviewed. It is expected that the merits offered by plasma-assisted ALD will further increase the interest of equipment manufacturers for developing industrial-scale deposition configurations such that the method will find its use in several manufacturing applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI