亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers

计算机科学 脑电图 人工智能 脑-机接口 模式识别(心理学) 特征选择 情绪分类 核(代数) 特征(语言学) 机器学习 语音识别 特征提取 情绪识别 支持向量机 集合(抽象数据类型) 心理学 数学 语言学 哲学 组合数学 精神科 程序设计语言
作者
John Atkinson,Daniel Prado Campos
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:47: 35-41 被引量:463
标识
DOI:10.1016/j.eswa.2015.10.049
摘要

Current emotion recognition computational techniques have been successful on associating the emotional changes with the EEG signals, and so they can be identified and classified from EEG signals if appropriate stimuli are applied. However, automatic recognition is usually restricted to a small number of emotions classes mainly due to signal’s features and noise, EEG constraints and subject-dependent issues. In order to address these issues, in this paper a novel feature-based emotion recognition model is proposed for EEG-based Brain–Computer Interfaces. Unlike other approaches, our method explores a wider set of emotion types and incorporates additional features which are relevant for signal pre-processing and recognition classification tasks, based on a dimensional model of emotions: Valenceand Arousal. It aims to improve the accuracy of the emotion classification task by combining mutual information based feature selection methods and kernel classifiers. Experiments using our approach for emotion classification which combines efficient feature selection methods and efficient kernel-based classifiers on standard EEG datasets show the promise of the approach when compared with state-of-the-art computational methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
8秒前
du发布了新的文献求助10
9秒前
番茄酱完成签到 ,获得积分10
12秒前
inRe发布了新的文献求助10
14秒前
胡林发布了新的文献求助10
16秒前
Raunio完成签到,获得积分10
22秒前
Mmrc发布了新的文献求助30
30秒前
44秒前
ucas大菠萝完成签到,获得积分10
47秒前
ALiyyyn发布了新的文献求助10
50秒前
快乐学习每一天完成签到 ,获得积分10
1分钟前
科研通AI6应助尊敬的芷卉采纳,获得10
1分钟前
Jasper应助尊敬的芷卉采纳,获得10
1分钟前
科研通AI6应助尊敬的芷卉采纳,获得10
1分钟前
科研通AI6应助尊敬的芷卉采纳,获得10
1分钟前
田様应助尊敬的芷卉采纳,获得10
1分钟前
科研通AI6应助尊敬的芷卉采纳,获得10
1分钟前
科研通AI6应助尊敬的芷卉采纳,获得10
1分钟前
科研通AI6应助尊敬的芷卉采纳,获得10
1分钟前
充电宝应助尊敬的芷卉采纳,获得10
1分钟前
Owen应助尊敬的芷卉采纳,获得10
1分钟前
领导范儿应助郭博采纳,获得10
1分钟前
粽子完成签到,获得积分10
1分钟前
ALiyyyn完成签到,获得积分20
1分钟前
1分钟前
神医magical发布了新的文献求助10
1分钟前
lzxucn完成签到,获得积分10
1分钟前
1分钟前
青春完成签到,获得积分10
1分钟前
青春发布了新的文献求助10
1分钟前
归去来兮应助尊敬的芷卉采纳,获得10
1分钟前
所所应助尊敬的芷卉采纳,获得10
1分钟前
JamesPei应助尊敬的芷卉采纳,获得10
1分钟前
NexusExplorer应助尊敬的芷卉采纳,获得10
1分钟前
FashionBoy应助尊敬的芷卉采纳,获得10
1分钟前
orixero应助尊敬的芷卉采纳,获得10
1分钟前
思源应助尊敬的芷卉采纳,获得10
1分钟前
小马甲应助尊敬的芷卉采纳,获得10
1分钟前
Ava应助尊敬的芷卉采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628118
求助须知:如何正确求助?哪些是违规求助? 4715649
关于积分的说明 14963643
捐赠科研通 4785789
什么是DOI,文献DOI怎么找? 2555335
邀请新用户注册赠送积分活动 1516649
关于科研通互助平台的介绍 1477184