Learning molecular potentials with neural networks

人工神经网络 计算机科学 困境 人工智能 机器学习 领域(数学) 神经系统网络模型 计算模型 多样性(控制论) 数据科学 循环神经网络 人工神经网络的类型 数学 几何学 纯数学
作者
Hatice Gökcan,Olexandr Isayev
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:12 (2) 被引量:36
标识
DOI:10.1002/wcms.1564
摘要

Abstract The potential energy of molecular species and their conformers can be computed with a wide range of computational chemistry methods, from molecular mechanics to ab initio quantum chemistry. However, the proper choice of the computational approach based on computational cost and reliability of calculated energies is a dilemma, especially for large molecules. This dilemma is proved to be even more problematic for studies that require hundreds and thousands of calculations, such as drug discovery. On the other hand, driven by their pattern recognition capabilities, neural networks started to gain popularity in the computational chemistry community. During the last decade, many neural network potentials have been developed to predict a variety of chemical information of different systems. Neural network potentials are proved to predict chemical properties with accuracy comparable to quantum mechanical approaches but with the cost approaching molecular mechanics calculations. As a result, the development of more reliable, transferable, and extensible neural network potentials became an attractive field of study for researchers. In this review, we outlined an overview of the status of current neural network potentials and strategies to improve their accuracy. We provide recent examples of studies that prove the applicability of these potentials. We also discuss the capabilities and shortcomings of the current models and the challenges and future aspects of their development and applications. It is expected that this review would provide guidance for the development of neural network potentials and the exploitation of their applicability. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Molecular and Statistical Mechanics > Molecular Interactions Software > Molecular Modeling
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助成就茗采纳,获得10
1秒前
Akim应助15884134873采纳,获得10
1秒前
2秒前
roaring发布了新的文献求助10
2秒前
小屋完成签到,获得积分10
2秒前
4秒前
5秒前
6秒前
小屋发布了新的文献求助10
6秒前
7秒前
orixero应助roaring采纳,获得10
7秒前
张姐完成签到,获得积分10
7秒前
7秒前
842413119完成签到,获得积分10
8秒前
rrgogo发布了新的文献求助10
9秒前
直击灵魂完成签到 ,获得积分10
9秒前
醒醒完成签到,获得积分10
10秒前
张姐发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
15884134873发布了新的文献求助10
14秒前
俭朴的跳跳糖完成签到 ,获得积分10
14秒前
Mo完成签到,获得积分10
15秒前
tananna完成签到,获得积分10
15秒前
英俊的铭应助斯文念波采纳,获得10
15秒前
缥缈冬寒发布了新的文献求助10
16秒前
左肩微笑发布了新的文献求助10
17秒前
Rondab应助远山淡影_cy采纳,获得10
18秒前
yar应助张姐采纳,获得10
18秒前
CAOHOU应助张姐采纳,获得10
18秒前
Happyness应助张姐采纳,获得10
18秒前
20秒前
21秒前
yummy发布了新的文献求助10
24秒前
24秒前
24秒前
yar应助Demi_Ming采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176