Learning molecular potentials with neural networks

人工神经网络 计算机科学 困境 人工智能 机器学习 领域(数学) 神经系统网络模型 计算模型 多样性(控制论) 数据科学 循环神经网络 人工神经网络的类型 数学 几何学 纯数学
作者
Hatice Gökcan,Olexandr Isayev
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:12 (2) 被引量:36
标识
DOI:10.1002/wcms.1564
摘要

Abstract The potential energy of molecular species and their conformers can be computed with a wide range of computational chemistry methods, from molecular mechanics to ab initio quantum chemistry. However, the proper choice of the computational approach based on computational cost and reliability of calculated energies is a dilemma, especially for large molecules. This dilemma is proved to be even more problematic for studies that require hundreds and thousands of calculations, such as drug discovery. On the other hand, driven by their pattern recognition capabilities, neural networks started to gain popularity in the computational chemistry community. During the last decade, many neural network potentials have been developed to predict a variety of chemical information of different systems. Neural network potentials are proved to predict chemical properties with accuracy comparable to quantum mechanical approaches but with the cost approaching molecular mechanics calculations. As a result, the development of more reliable, transferable, and extensible neural network potentials became an attractive field of study for researchers. In this review, we outlined an overview of the status of current neural network potentials and strategies to improve their accuracy. We provide recent examples of studies that prove the applicability of these potentials. We also discuss the capabilities and shortcomings of the current models and the challenges and future aspects of their development and applications. It is expected that this review would provide guidance for the development of neural network potentials and the exploitation of their applicability. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Molecular and Statistical Mechanics > Molecular Interactions Software > Molecular Modeling
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bu发布了新的文献求助10
刚刚
猪猪猪发布了新的文献求助10
1秒前
Ehgnix完成签到,获得积分10
1秒前
一鱼两吃完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
吃颗糖吧完成签到,获得积分20
3秒前
申木完成签到 ,获得积分10
3秒前
强健的弱完成签到 ,获得积分10
3秒前
justsoso完成签到,获得积分10
4秒前
Chen完成签到,获得积分10
4秒前
连寒香完成签到,获得积分10
4秒前
开心potato完成签到 ,获得积分10
5秒前
5秒前
5秒前
Avatar完成签到,获得积分10
5秒前
我是聪聪呦完成签到,获得积分10
6秒前
老衲完成签到,获得积分0
6秒前
忆韵发布了新的文献求助10
7秒前
俊逸鸣凤完成签到,获得积分20
7秒前
天边完成签到,获得积分10
7秒前
薛人英完成签到,获得积分10
8秒前
风中的以珊完成签到,获得积分10
8秒前
医路有你完成签到 ,获得积分10
8秒前
海角七号完成签到 ,获得积分10
8秒前
bb完成签到,获得积分10
8秒前
科研小虫完成签到,获得积分10
8秒前
9秒前
9秒前
NAN发布了新的文献求助10
9秒前
润兴向禧完成签到,获得积分10
10秒前
鲤鱼问雁完成签到,获得积分10
10秒前
peace and love完成签到,获得积分10
10秒前
li完成签到 ,获得积分10
10秒前
巧宝发布了新的文献求助10
10秒前
咖啡茶叶豆完成签到,获得积分10
10秒前
11秒前
Hollow发布了新的文献求助10
11秒前
ercong_604完成签到,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3063367
求助须知:如何正确求助?哪些是违规求助? 2718227
关于积分的说明 7457962
捐赠科研通 2364609
什么是DOI,文献DOI怎么找? 1253459
科研通“疑难数据库(出版商)”最低求助积分说明 608647
版权声明 596606