Learning molecular potentials with neural networks

人工神经网络 计算机科学 困境 人工智能 机器学习 领域(数学) 神经系统网络模型 计算模型 多样性(控制论) 数据科学 循环神经网络 人工神经网络的类型 数学 几何学 纯数学
作者
Hatice Gökcan,Olexandr Isayev
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:12 (2) 被引量:36
标识
DOI:10.1002/wcms.1564
摘要

Abstract The potential energy of molecular species and their conformers can be computed with a wide range of computational chemistry methods, from molecular mechanics to ab initio quantum chemistry. However, the proper choice of the computational approach based on computational cost and reliability of calculated energies is a dilemma, especially for large molecules. This dilemma is proved to be even more problematic for studies that require hundreds and thousands of calculations, such as drug discovery. On the other hand, driven by their pattern recognition capabilities, neural networks started to gain popularity in the computational chemistry community. During the last decade, many neural network potentials have been developed to predict a variety of chemical information of different systems. Neural network potentials are proved to predict chemical properties with accuracy comparable to quantum mechanical approaches but with the cost approaching molecular mechanics calculations. As a result, the development of more reliable, transferable, and extensible neural network potentials became an attractive field of study for researchers. In this review, we outlined an overview of the status of current neural network potentials and strategies to improve their accuracy. We provide recent examples of studies that prove the applicability of these potentials. We also discuss the capabilities and shortcomings of the current models and the challenges and future aspects of their development and applications. It is expected that this review would provide guidance for the development of neural network potentials and the exploitation of their applicability. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Molecular and Statistical Mechanics > Molecular Interactions Software > Molecular Modeling
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jinqiang完成签到,获得积分10
刚刚
科研通AI6应助陈有游采纳,获得30
刚刚
1秒前
leo完成签到 ,获得积分10
1秒前
1秒前
清平道人完成签到,获得积分10
1秒前
2秒前
赘婿应助Frankyu采纳,获得10
2秒前
科研通AI2S应助无敌通采纳,获得10
2秒前
zhaosiqi完成签到 ,获得积分10
2秒前
xt_489完成签到,获得积分10
2秒前
wj发布了新的文献求助10
4秒前
王多肉发布了新的文献求助10
4秒前
dcx完成签到,获得积分10
4秒前
LYC完成签到,获得积分10
4秒前
Raven举报一支求助涉嫌违规
5秒前
卿君完成签到,获得积分10
5秒前
xiax03完成签到,获得积分10
5秒前
Daisy完成签到 ,获得积分10
5秒前
静曼完成签到,获得积分10
5秒前
一枚研究僧完成签到,获得积分0
5秒前
6秒前
6秒前
大叉烧完成签到,获得积分10
7秒前
海鸥完成签到,获得积分0
7秒前
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
听汐完成签到 ,获得积分10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
7秒前
子车茗应助科研通管家采纳,获得20
7秒前
子车茗应助科研通管家采纳,获得20
7秒前
英姑应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
8秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388268
求助须知:如何正确求助?哪些是违规求助? 4510318
关于积分的说明 14034886
捐赠科研通 4421132
什么是DOI,文献DOI怎么找? 2428650
邀请新用户注册赠送积分活动 1421284
关于科研通互助平台的介绍 1400517