Health effects of air pollutant mixtures on overall mortality among the elderly population using Bayesian kernel machine regression (BKMR)

百分位 四分位间距 污染物 环境卫生 人口 医学 人口学 臭氧 空气污染物 逻辑回归 环境科学 统计 空气污染 数学 地理 生物 气象学 生态学 社会学
作者
Haomin Li,Wenying Deng,Raphael Small,Joel Schwartz,Jeremiah Zhe Liu,Liuhua Shi
出处
期刊:Chemosphere [Elsevier]
卷期号:286 (Pt 1): 131566-131566 被引量:51
标识
DOI:10.1016/j.chemosphere.2021.131566
摘要

It is well documented that fine particles matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) are associated with a range of adverse health outcomes. However, most epidemiologic studies have focused on understanding their additive effects, despite that individuals are exposed to multiple air pollutants simultaneously that are likely correlated with each other. Therefore, we applied a novel method - Bayesian Kernel machine regression (BKMR) and conducted a population-based cohort study to assess the individual and joint effect of air pollutant mixtures (PM2.5, O3, and NO2) on all-cause mortality among the Medicare population in 15 cities with 656 different ZIP codes in the southeastern US. The results suggest a strong association between pollutant mixture and all-cause mortality, mainly driven by PM2.5. The positive association of PM2.5 with mortality appears stronger at lower percentiles of other pollutants. An interquartile range change in PM2.5 concentration was associated with a significant increase in mortality of 1.7 (95% CI: 0.5, 2.9), 1.6 (95% CI: 0.4, 2.7) and 1.4 (95% CI: 0.1, 2.6) standard deviations (SD) when O3 and NO2 were set at the 25th, 50th, and 75th percentiles, respectively. BKMR analysis did not identify statistically significant interactions among PM2.5, O3, and NO2. However, since the small sub-population might weaken the study power, additional studies (in larger sample size and other regions in the US) are in need to reinforce the current finding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
着急的猴完成签到 ,获得积分10
刚刚
legend完成签到,获得积分0
刚刚
木昆完成签到 ,获得积分10
刚刚
852应助要减肥冰菱采纳,获得10
刚刚
Lillianzhu1完成签到,获得积分10
刚刚
holly发布了新的文献求助10
1秒前
屈洪娇发布了新的文献求助10
1秒前
joeqin完成签到,获得积分10
1秒前
东东完成签到,获得积分10
1秒前
yyyy完成签到,获得积分10
1秒前
YY完成签到,获得积分10
1秒前
文静的电灯胆完成签到,获得积分10
1秒前
澜冰发布了新的文献求助10
1秒前
1秒前
caicai发布了新的文献求助10
2秒前
好困应助外向的夜梦采纳,获得10
2秒前
2秒前
2秒前
yuk完成签到,获得积分20
2秒前
3秒前
3秒前
3秒前
结构小工发布了新的文献求助10
4秒前
lyyyyyyyy发布了新的文献求助10
4秒前
涛涛完成签到,获得积分20
4秒前
李爱国应助李飞龙采纳,获得10
4秒前
Ashely发布了新的文献求助10
5秒前
顾矜应助rrrrrrun采纳,获得10
5秒前
DDD发布了新的文献求助10
5秒前
01skystriker完成签到,获得积分10
6秒前
6秒前
金乌发布了新的文献求助10
6秒前
Hello应助yyyy采纳,获得10
6秒前
Ava应助霜幕采纳,获得10
6秒前
shiyue发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
Wind应助木棉采纳,获得10
7秒前
DRDOC发布了新的文献求助10
8秒前
大个应助白诺言采纳,获得10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444