Neutralizing the impact of atmospheric turbulence on complex scene imaging via deep learning

随机性 人工智能 计算机科学 过程(计算) 代表(政治) 湍流 对象(语法) 计算机视觉 模式识别(心理学) 算法 物理 气象学 数学 操作系统 统计 政治 法学 政治学
作者
Darui Jin,Ying Chen,Yi Lu,Junzhang Chen,Peng Wang,Zichao Liu,Sheng Guo,Xiangzhi Bai
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:3 (10): 876-884 被引量:60
标识
DOI:10.1038/s42256-021-00392-1
摘要

A turbulent medium with eddies of different scales gives rise to fluctuations in the index of refraction during the process of wave propagation, which interferes with the original spatial relationship, phase relationship and optical path. The outputs of two-dimensional imaging systems suffer from anamorphosis brought about by this effect. Randomness, along with multiple types of degradation, make it a challenging task to analyse the reciprocal physical process. Here, we present a generative adversarial network (TSR-WGAN), which integrates temporal and spatial information embedded in the three-dimensional input to learn the representation of the residual between the observed and latent ideal data. Vision-friendly and credible sequences are produced without extra assumptions on the scale and strength of turbulence. The capability of TSR-WGAN is demonstrated through tests on our dataset, which contains 27,458 sequences with 411,870 frames of algorithm simulated data, physical simulated data and real data. TSR-WGAN exhibits promising visual quality and a deep understanding of the disparity between random perturbations and object movements. These preliminary results also shed light on the potential of deep learning to parse stochastic physical processes from particular perspectives and to solve complicated image reconstruction problems given limited data. Turbulent optical distortions in the atmosphere limit the ability of optical technologies such as laser communication and long-distance environmental monitoring. A new method using adversarial networks learns to counter the physical processes underlying the turbulence so that complex optical scenes can be reconstructed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助研友_nPPz9n采纳,获得10
刚刚
刚刚
科研通AI6应助tqq采纳,获得10
刚刚
刚刚
顺顺黎黎发布了新的文献求助10
1秒前
科研通AI6应助陶醉的蓝血采纳,获得10
2秒前
漂泊完成签到,获得积分10
2秒前
CodeCraft应助北冥鱼采纳,获得10
2秒前
piaopiao完成签到,获得积分10
2秒前
起风了完成签到,获得积分10
4秒前
jiangjiang发布了新的文献求助20
4秒前
wanci应助qin采纳,获得10
4秒前
wsh完成签到,获得积分10
4秒前
语芙完成签到,获得积分10
5秒前
5秒前
yjl完成签到,获得积分10
5秒前
Bruce_Wei发布了新的文献求助10
5秒前
5秒前
852应助武明进采纳,获得10
6秒前
木丁发布了新的文献求助10
7秒前
123发布了新的文献求助20
8秒前
未央完成签到,获得积分10
8秒前
8秒前
荷月初六发布了新的文献求助20
9秒前
小屏呀完成签到,获得积分20
9秒前
可靠代丝发布了新的文献求助10
10秒前
浮游应助qin采纳,获得10
10秒前
小小aa16完成签到,获得积分0
10秒前
10秒前
10秒前
11秒前
儒雅厉发布了新的文献求助100
11秒前
量子星尘发布了新的文献求助10
11秒前
十一发布了新的文献求助40
11秒前
平常的如凡完成签到,获得积分10
11秒前
英姑应助LA采纳,获得10
11秒前
拿抓抓拿关注了科研通微信公众号
12秒前
13秒前
christy完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887